Another take on volvocine individuality

Dinah Davison & Erik Hanschen

Dinah Davison and Erik Hanschen.

A couple of weeks ago, I indulged in a little shameless self-promotion, writing about my new chapter on volvocine individuality in Biological Individuality, Integrating Scientific, Philosophical, and Historical Perspectives. Now two graduate students in the Michod lab at the University of Arizona, Erik Hanschen and Dinah Davison, have published their own take on volvocine individuality in Philosophy, Theory, and Practice in Biology (“Evolution of individuality: a case study in the volvocine green algae“). The article is open-access, and Hanschen and Davison are listed as equal contributors.

[Read more…]

Cells, colonies, and clones: individuality in the volvocine algae

Biological Individuality

As I mentioned previously, I have a chapter in the newly published book Biological Individuality, Integrating Scientific, Philosophical, and Historical Perspectives. The chapter was actually written nearly five years ago, but things move more slowly in the philosophy world than that of biology. Finally, though, both the print and electronic versions are now available; here is the electronic version of my chapter. The book currently has no reviews on Amazon, so if you want to give it a read, yours could be the first. If you’re interested in current and historical views on individuality, there is a lot of good stuff in here, including contributions by Scott Lidgard & Lynn Nyhart, Beckett Sterner, Andrew Reynolds, Snait Gissis, Olivier Rieppel, Michael Osborne, Hannah Landecker, Ingo Brigandt, James Elwick, Scott Gilbert, and Alan Love & Ingo Brigandt.

[Read more…]

Rediscovered after two thirds of a century: Pleodorina sphaerica

Pleodorina sphaerica

Figure 1 from Nozaki et al. 2017. Pleodorina sphaerica.

There really aren’t enough people looking for volvocine algae. There’s a suspicious tendency for the geographical centers of volvocine diversity — southern Africa, central North America, southeast Asia — to include the home institutions of phycologists studying volvocine diversity — Mary Pocock, Richard Starr, Hisayoshi Nozaki, respectively. I find it much more likely that this is an artifact of sampling effort than that, for example, central Africa and Central and South America are depauperate of volvocine algae.

[Read more…]

J. S. Huxley part 2: Volvox

Last time, I wrote about Julian Huxley’s 1912 book, The Individual in the Animal Kingdom, and his use of the volvocine algae as an example. I liked most of what he had to say, though I took issue with his assertion that

…all the other members of the family except Volvox…are colonies and nothing more—their members have united together because of certain benefits resulting from mere aggregation, but are not in any way interdependent, so that the wholes are scarcely more than the sum of their parts.

This is, of course, a matter of how we define a multicellular organism, but I think any definition that excludes, for example, Eudorina, is not a very useful one.

This time, I’ll look at the rest of what Huxley had to say about the volvocine algae, most of which is about Volvox:

[Read more…]

J. S. Huxley part 1: Gonium

Julian Huxley was one of the biologists responsible for the merging of Mendelian genetics and Darwinian evolution in the early 20th century, the modern synthesis. His most influential work was Evolution: The Modern Synthesis, published in 1942. Thirty years earlier, though, he published a book on biological individuality, The Individual in the Animal Kingdom. Thankfully, the copyright on this book has expired, so it is now part of the public domain, and a scanned version is available for free in pdf and epub versions from Google.

Huxley Cover

Any book with Volvox on the cover can’t be all bad!

[Read more…]

Sex change (in Volvox)

Alexey Desnitskiy from Saint Petersburg State University has published a new review of sexual development in the genus Volvox in the International Journal of Plant Reproductive Biology. 

The article includes an up-to-date review of Professor Desnitskiy’s own work describing four developmental “programs” in the various species of Volvox:

[Read more…]

The Volvox 2017 website is live


The website for the Volvox 2017 conference is up at Registration isn’t open yet, but there’s some information about the venue, the Donald Danforth Plant Science Center in St. Louis. The meeting is set for August 16-19, 2017.

The goal of the International Volvox Conference is to bring together international scientists working with Volvox and its relatives (aka Volvocales or volvocine algae). We cordially invite experimentalists and theorists interested in these fascinating organisms.

I’ll keep you posted!

Evolution of microRNAs in the volvocine algae

The following guest post was kindly provided by Dr. Kimberly Chen. I have edited only for formatting.

MicroRNAs (miRNAs) are a class of non-coding small RNAs that regulate numerous developmental processes in plants and animals and are generally associated with the evolution of multicellularity and cellular differentiation. They are processed from long hairpin precursors to mature forms and subsequently loaded into a multi-protein complex, of which the Argonaute (AGO) family protein is the core component. The small RNAs then guide the protein complex to recognize complementary mRNA transcripts and conduct post-transcriptional gene silencing.

[Read more…]

Pleodorina inversion

Stephanie Höhn and Armin Hallmann have published a detailed study of the developmental process of inversion in Pleodorina californicaPleodorina is one of the two genera we usually refer to as ‘partially differentiated’ (the other is Astrephomene), meaning that some of their cells are specialized for motility and never reproduce (soma) and some perform both motility and reproductive functions. P. californica is pretty big, up to about 1/3 of a millimeter, easily visible to the naked eye (though you’d need better vision than mine to make out any details).

Stephanie Höhn sampling a pond near Cambridge University during the Volvox 2015 meeting.

Stephanie Höhn sampling a pond near Cambridge University during the Volvox 2015 meeting.

Like all members of the family Volvocaceae, P. californica undergoes complete inversion during development:

After the completion of the cell division phase and before inversion, the embryos of Gonium, Pandorina, Eudorina and Pleodorina consist of a bowl-shaped cell sheet, whereas the embryonic cells of Volvox form a spherical cell sheet. With exception of the genus Astrephomene, all multicellular volvocine embryos face the same “problem”: the flagellar ends of all the cells point toward the interior of the bowl-shaped or spherical cell sheet rather than to the exterior, where they need to be later to function during locomotion. [References removed]

[Read more…]