Initiation of cell division in Chlamydomonas

Deborah Shelton and colleagues have published a new article arguing that the reigning model of cell division initiation in Chlamydomonas reinhardtii needs to be revised [full disclosure: Dr. Shelton and I were labmates in Rick Michod’s lab at the University of Arizona]. The evolution of multicellularity almost certainly involved changes in cell cycle regulation; for example, there is good evidence that changes to the cell cycle regulator retinoblastoma were involved in the initial transition to multicellular life in the volvocine algae. So understanding cell cycle regulation is vital for understanding the evolution of multicellularity.

[Read more…]

Spheroids without inversion: Astrephomene development

Algae in the family Volvocaceae are (with one exception) little spheroids that swim around in freshwater lakes, ponds, and puddles. Volvox is by far the most famous of these algae, but there are a number of smaller genera, including Eudorina, Pleodorina, and Pandorina:

Fig. 1 from Herron 2016. Examples of volvocine species. (A) Chlamydomonas reinhardtii, (B) Gonium pectorale, (C) Astrephomene gubernaculiferum, (D) Pan- dorina morum, (E) Volvulina compacta, (F) Platydorina caudata, (G) Yamagishiella unicocca, (H) Colemanosphaera charkowiensis, (I) Eudorina elegans, (J) Pleodorina starrii, (K) Volvox barberi, (L) Volvox ovalis, (M) Volvox gigas, (N) Volvox aureus, (O) Volvox carteri. Figure Credit for A and B: Deborah Shelton.

Fig. 1 from Herron 2016. Examples of volvocine species; D-O are in the family Volvocaceae. (A) Chlamydomonas reinhardtii, (B) Gonium pectorale, (C) Astrephomene gubernaculiferum, (D) Pandorina morum, (E) Volvulina compacta, (F) Platydorina caudata, (G) Yamagishiella unicocca, (H) Colemanosphaera charkowiensis, (I) Eudorina elegans, (J) Pleodorina starrii, (K) Volvox barberi, (L) Volvox ovalis, (M) Volvox gigas, (N) Volvox aureus, (O) Volvox carteri. Figure Credit for A and B: Deborah Shelton.

All of the members of this family have a problem: at the end of cell division, they find themselves in an awkward configuration, with their flagella on the inside. Each cell has two flagella, and the algae need them on the outside to be able to swim. They achieve this through a developmental process called inversion, essentially turning themselves completely inside-out during embryogenesis. Even the one member of the family that is not spheroidal, Platydorina (F in the figure above), undergoes inversion before flattening into a horseshoe shape. The ways in which they do this are complex and diverse (see for example “Pleodorina inversion” and “The most important time of your life“), but not the topic of this post.

The sister group to the Volvocaceae, the Goniaceae, also includes a spheroidal genus, Astrephomene (C in the figure above). Although Astrephomene looks a lot like some of the Volvocaceae, say Eudorina (I) or Pleodorina (J), it doesn’t undergo inversion!

[Read more…]

Pleodorina inversion

Stephanie Höhn and Armin Hallmann have published a detailed study of the developmental process of inversion in Pleodorina californicaPleodorina is one of the two genera we usually refer to as ‘partially differentiated’ (the other is Astrephomene), meaning that some of their cells are specialized for motility and never reproduce (soma) and some perform both motility and reproductive functions. P. californica is pretty big, up to about 1/3 of a millimeter, easily visible to the naked eye (though you’d need better vision than mine to make out any details).

Stephanie Höhn sampling a pond near Cambridge University during the Volvox 2015 meeting.

Stephanie Höhn sampling a pond near Cambridge University during the Volvox 2015 meeting.

Like all members of the family Volvocaceae, P. californica undergoes complete inversion during development:

After the completion of the cell division phase and before inversion, the embryos of Gonium, Pandorina, Eudorina and Pleodorina consist of a bowl-shaped cell sheet, whereas the embryonic cells of Volvox form a spherical cell sheet. With exception of the genus Astrephomene, all multicellular volvocine embryos face the same “problem”: the flagellar ends of all the cells point toward the interior of the bowl-shaped or spherical cell sheet rather than to the exterior, where they need to be later to function during locomotion. [References removed]

[Read more…]

Volvox 2017 – save the date

The Fourth International Volvox Conference will be held in St. Louis, Missouri August 16-19, 2017, with Jim Umen organizing.

Starting in 2011, we have had a Volvox meeting every other year (every year there’s not a Chlamydomonas meeting, that is). The first meeting was at Biosphere 2 outside of Tucson, Arizona, the second at the University of New Brunswick, and the third at Cambridge University.

Biosphere 2

Biosphere 2, the site of the First International Volvox Meeting in 2011.

You don’t have to study Volvox to join us; the meeting is open to anyone with an interest in the evolution of multicellularity (last year’s invited speaker was Professor Pauline Schapp, who studies cellular slime molds).

[Read more…]

Retrogenes in Volvox and Chlamy

The evolution of multicellularity in the volvocine algae appears to have happened primarily through co-option of existing genes for new functions. For example, the initial transition from a unicellular life cycle to a simple multicellular one involved the retinoblastoma gene, as Hanschen and colleagues elegantly demonstrated (see “The evolution of undifferentiated multicellularity: the Gonium genome“). A Volvox gene involved in cellular differentiation, regA, was likely co-opted from an ancestral role in environmental sensing, and a similar origin appears to explain the use of cyclic AMP for the signaling that causes multicellular aggregation in cellular slime molds (see “Volvox 2015: evolution“). 

Some of the changes leading to complex multicellularity, though, clearly did involve new genes. Two gene families involved in building the extracellular matrix that makes up most of a Volvox colony, the pherophorins and metalloproteinases, have undergone multiple duplication events leading to greatly expanded gene families (see “Heads I win; tails you lose: Evolution News & Views on Gonium, part 2“). One mechanism by which genes are duplicated is retroposition, in which a messenger RNA is reverse transcribed into DNA and inserted into the genome:

Fig S1A from Jakalski et al. 2016. Basic mechanism of retroposition. DNA is transcribed into a pre-mRNA by RNA polymerase, introns are spliced out, and a poly(A) tail is added to the 3′ end, resulting in a mature messenger RNA. The mRNA is then reverse-transcribed to DNA and inserted into a new genomic location.

[Read more…]

Graduate student position in the Nedelcu lab

If you’re a fan of Volvox and the volvocine algae and have recently received an undergraduate degree in biology or a related field, now’s your chance to get serious about studying them. Aurora Nedelcu is looking for a graduate student to join her lab at the University of New Brunswick. Professor Nedelcu is a major player in the Volvox community, having published foundational papers on diverse aspects of volvocine biology and organized the first two international Volvox meetings. This is a great opportunity to join a vibrant and growing research community:

A graduate student position is available in the laboratory of Aurora Nedelcu, in the Department of Biology at the University of New Brunswick, Fredericton, CANADA. Research in our laboratory is directed towards understanding general, fundamental issues in evolution – such as the evolution of multicellularity, development, cell differentiation, sex, programmed cell death, altruism.  Our research is rooted in the framework of transitions in individuality and evolution of complexity (at a conceptual level), and of cellular responses to stress (at a more mechanistic level).  The experimental model-system we are currently using is the green algal group, Volvocales (see our Volvocales Information Project; http://www.unbf.ca/vip). Highly motivated students with interests in either theoretical/genomics or experimental/molecular approaches, and previous research experience are encouraged to apply. Interested applicants should e-mail a CV, summary of research experience and interests, unofficial transcripts, and contact information for three referees to anedelcu@unb.ca.

Applicants should meet the minimum requirements for acceptance in the Biology Department Graduate Program (see http://www2.unb.ca/biology/Degree_Info/Graduate.html).

The evolution of undifferentiated multicellularity: the Gonium genome

Blogging took a backseat to the wedding of two dear friends two weekends ago and to morel hunting last weekend, so I’m only now getting around to a post that should have been written weeks ago (I promised on April 22 that it would be out the following week). Last month, Erik Hanschen and colleagues published the Gonium pectorale genome, filling in some crucial bits of the transition to multicellular life in the volvocine algae. This was a big project, taking several years and involving over 20 authors from over a dozen institutions. The final paper is open access in Nature Communications.

I did post an effort to explain some aspects of the paper to the cdesign proponentsists at Evolution News and Views, who, by their own admission, failed to understand it (“After reading this paper, we’re none the wiser.”). I also complained of the science media’s tendency to refer to all algae as ‘pond scum.’ The lead author of the genome paper kindly followed up with a guest post addressing some of ENV‘s other misunderstandings, such as the purpose of model organisms in biology and the difference between ‘assertion’ and ‘evidence’. But now it’s time to dig into what the genome paper actually says.

[Read more…]

Please stop calling them pond scum

Gonium pectorale. Credit: Kansas State University.

Gonium pectorale. Credit: Kansas State University.

Yes, they live in ponds; no they don’t form any kind of scum. The press release from Kansas State on the Gonium genome paper, which is reprinted here, here, and here, is titled “Pond scum and the gene pool: One critical gene in green algae responsible for multicellular evolution, understanding of cancer origin.” Gonium forms planktonic colonies of (usually) 8, 16, or 32 cells that swim under their own power and exhibit phototaxis (they’ll swim toward a light source). They are not pond scum. ‘Algae’ and ‘pond scum’ are not synonyms, dig? Leaving aside the distinction between algae and cyanobacteria, calling Gonium pond scum is like saying pineapples are lemons (because both are fruits).

Also…cancer origin, really? You went there? The word ‘cancer’ does not appear in the paper except in the funding acknowledgements (Bradley Olson is partly funded by the KSU Johnson Cancer Center).