Life has two contradictory properties that any theory explaining its origin must encompass: similarities everywhere, and differences separating species. So far, the only theory that covers both beautifully and explains how one is the consequence of the other is evolution. Common descent unites all life on earth, while evolution itself is about constant change; similarities are rooted in our shared ancestry, while differences arise as lineages diverge.
Now here’s a new example of both phenomena: the development of segmentation in snakes. We humans have 33 vertebrae, zebrafish have 30-33, chickens have 55, mice have 65, and snakes have up to 300 — there’s about a ten-fold range right there. There are big obvious morphological and functional differences, too: snakes are sinuous slitherers notable for their flexibility, fish use their spines as springs for side-to-side motion, chickens fuse the skeleton into a bony box, and humans are upright bipeds with backaches. Yet underlying all that diversity is a common thread, that segmented vertebral column.
The similarities are a result of common descent. The differences, it turns out, arise from subtle changes in developmental timing.