Snake segmentation

Blogging on Peer-Reviewed Research

Life has two contradictory properties that any theory explaining its origin must encompass: similarities everywhere, and differences separating species. So far, the only theory that covers both beautifully and explains how one is the consequence of the other is evolution. Common descent unites all life on earth, while evolution itself is about constant change; similarities are rooted in our shared ancestry, while differences arise as lineages diverge.

Now here’s a new example of both phenomena: the development of segmentation in snakes. We humans have 33 vertebrae, zebrafish have 30-33, chickens have 55, mice have 65, and snakes have up to 300 — there’s about a ten-fold range right there. There are big obvious morphological and functional differences, too: snakes are sinuous slitherers notable for their flexibility, fish use their spines as springs for side-to-side motion, chickens fuse the skeleton into a bony box, and humans are upright bipeds with backaches. Yet underlying all that diversity is a common thread, that segmented vertebral column.

i-44c0b44c78c71955b53b0a7f004b7ea4-snakeseg.jpg
(Click for larger image)

Vertebral formula and somitogenesis in the corn snake.
a, Alizarin staining of a corn snake showing 296 vertebrae, including 3
cervical, 219 thoracic, 4 cloacal (distinguishable by their forked
lymphapophyses) and 70 caudal. b, Time course of corn snake development
after egg laying (118-somite embryo on the far left) until the end of
somitogenesis (~315 somites).

The similarities are a result of common descent. The differences, it turns out, arise from subtle changes in developmental timing.

[Read more…]

Evolving proteins in snakes

Blogging on Peer-Reviewed Research

We’ve heard the arguments about the relative importance of mutations in cis regulatory regions vs. coding sequences in evolution before — it’s the idea that major transitions in evolution were accomplished more by changes in the timing and pattern of gene expression than by significant changes in the genes themselves. We developmental biologists tend to side with the cis-sies, because timing and pattern are what we’re most interested in. But I have to admit that there are plenty of accounts of functional adaptation in populations that are well-founded in molecular evidence, and the cis regulatory element story is weaker in the practical sense that counts most in science (In large part, I think that’s an artifact of the tools — we have better techniques for examining expressed sequences, while regulatory elements are hidden away in unexpressed regions of the genome. Give it time, the cis proponents will catch up!)

This morning, I was sent a nice paper that describes a pattern of functional change in an important molecule — there is absolutely no development in it. It’s a classic example of an evolutionary arms race, though, so it’s good that I mention this important and dominant side of the discipline of evolutionary biology — I know I leave the impression that all the cool stuff is in evo-devo, but there’s even more exciting biology outside the scope of my tunnel vision. Also, this paper describes a situation and animals with which I am very familiar, and wondered about years ago.

[Read more…]

Ventastega

Blogging on Peer-Reviewed Research

i-bb62d30eff8c4b9362f8c97ad45335fc-ventastega_recon.jpg

The paleontologists are going too far. This is getting ridiculous. They keep digging up these collections of bones that illuminate tetrapod origins, and they keep making finer and finer distinctions. On one earlier side we have a bunch of tetrapod-like fish — Tiktaalik and Panderichthys, for instance — and on the later side we have fish-like tetrapods, such as Acanthostega and Ichthyostega. Now they’re talking about shades of fishiness or tetrapodiness within those groups! You’d almost think they were documenting a pattern of gradual evolutionary change.

The latest addition is a description of Ventastega curonica, a creature that falls within the domain of the fish-like tetrapods, but is a bit fishier than other forms, so it actually bridges the gap between something like Tiktaalik and Acanthostega. We look forward to the imminent discovery of yet more fossils that bridge the gap between Ventastega and Tiktaalik, and between Ventastega and Acanthostega, and all the intermediates between them.

[Read more…]

Amphioxus and the evolution of the chordate genome

Blogging on Peer-Reviewed Research

This is an amphioxus, a cephalochordate or lancelet. It’s been stained to increase contrast; in life, they are pale, almost transparent.

i-56ee51e328b10451feb168cd9bab0ea5-amphioxus.jpg

It looks rather fish-like, or rather, much like a larval fish, with it’s repeated blocks of muscle arranged along a stream-lined form, and a notochord, or elastic rod that forms a central axis for efficient lateral motion of the tail…and it has a true tail that extends beyond the anus. Look closely at the front end, though: this is no vertebrate.

i-e961343b9bf5b6dfd74823fba6deeafb-amphioxus_closeup.jpg

It’s not much of a head. The notochord extends all the way to the front of the animal (in us vertebrates, it only reaches up as far as the base of the hindbrain); there’s no obvious brain, only the continuation of the spinal cord; there isn’t even a face, just an open hole fringed with tentacles. This animal collects small microorganisms in coastal waters, gulping them down and passing them back to the gill slits, which aren’t actually part of gills, but are components of a branchial net that allows water to filter through while trapping food particles. It’s a good living — they lounge about in large numbers on tropical beaches, sucking down liquids and any passing food, much like American tourists.

These animals have fascinated biologists for well over a century. They seem so primitive, with a mixture of features that are clearly similar to those of modern vertebrates, yet at the same time lacking significant elements. Could they be relics of the ancestral chordate condition? A new paper is out that discusses in detail the structure of the amphioxus genome, which reveals unifying elements that tell us much about the last common ancestor of all chordates.

[Read more…]

The wisdom of the cephalopod

That smart guy, Carl Zimmer, has written an article on those smart molluscs, the octopus. I like that his conclusion is that we can’t really judge their intelligence, because it is different than our own.

That’s the same answer I give to questions about the existence of intelligent life in the universe. I suspect that it’s there (but rarer than most astronomers seem to think — intelligence is an extremely uncommon adaptive strategy here on Earth, as is probably likewise elsewhere), but that it will be radically different in intent and action than our own, as different as we are from a squid, or a dolphin, or an elephant, to name a few forms that have evolved large brains. Often, the question of alien intelligence is more like, “Are there people like us out there?”, and I think the answer to that one is clearly no, almost certainly not. There are too many alternative pathways.