(via the UCMP Cephalopod Page)
(via the UCMP Cephalopod Page)
(from Nature 453, 826 (12 June 2008) — doi:10.1038/453826a; Published online 11 June 2008)
(via Scuba Duba)
We’re all familiar with Pavlov’s conditioning experiments with dogs. Dogs were treated to an unconditioned stimulus — something to which they would normally respond with a specific behavior, in this case, meat juice which would cause them to drool. Then they were simultaneously exposed to the unconditioned stimulus and a new stimulus, the conditioned stimulus, that they would learn to associate with the tasty, drool-worthy stimulus — a bell. Afterwards, ringing a bell alone would cause the dogs to make the drooling response. The ability to make such an association is a measure of the learning ability of the animal.
Now…how do we carry out such an experiment on a cephalopod? And can it be done on a cephalopod with a reputation (perhaps undeserved, as we shall see) as a more primitive, less intelligent member of the clade?
The nautilus, Nautilus pompilius despite being a beautiful animal in its own right, is generally regarded as the simplest of the cephalopods, with a small brain lacking the more specialized areas associated with learning and memory. It’s a relatively slow moving beast, drifting up and down through the water column to forage for food. It has primitive eyes, which to visual animals like ourselves seems to be a mark of less sophisticated sensory processing, but it has an elaborate array of tentacles and rhinophores which it uses to probe for food by touch and smell/taste. Compared to big-eyed, swift squid, a nautilus just seems a little sluggish and slow.
So let’s look and see how good a nautilus’s memory might be. First, we need a response to stimuli that we can recognize and measure, equivalent to the drooling of Pavlov’s dogs. While they don’t measurably salivate, the nautilus does have a reaction to the hint of something tasty in the water — it will extend its tentacles and rhinophores, as seen below, in a quantifiable metric called the tentacle extension response, or TER.
From the Aquarium of the Pacific.
It’s another transitional form, this time an amphibian from the Permian that shares characteristics of both frogs and salamanders — in life, it would have looked like a short-tailed, wide-headed salamander with frog-like ears, which is why it’s being called a “frogamander”.
We mammals have been beaten again. Shrimp have more sophisticated eyes than we do, with the ability to see things we can’t, and I’m feeling a bit envious.
But at least it is locomotion with style.