Pair-rule genes

i-3bbec495942aeae60047aa2d9af953ee-eve-ftz_stripes.jpg
i-ccbc028bf567ec6e49f3b515a2c4c149-old_pharyngula.gif

The general pattern of developing positional information in Drosophila starts out relatively simply and gets increasingly complicated as time goes by. Initially, there is a very broad distribution of a gradient of a maternal morphogen. That morphogen then triggers the expression of narrower (but still fairly broad) bands of aperiodic gap genes. The next step in this process is to turn on sets of genes in narrow, periodic bands that correspond to body segments. This next set of genes are called the pair-rule genes, because they do something surprising and rather neat: they are turned on in precisely alternating bands. In the picture above, for instance, one pair-rule gene, even-skipped, has been stained blue, and it is expressed in parasegment* 1, 3, 5, 7, etc. Another, fushi tarazu, has been stained brown, and this gene is turned on in parasegments 2, 4, 6, 8, etc.

[Read more…]

Evolution of direct development in echinoderms

In chapter 14 of the Origin of Species, Darwin wondered about the whole process of metamorphosis. Some species undergo radical transformations from embryo to adult, passing through larval stages that are very different from the adult, while others proceed directly to the adult form. This process of metamorphosis is of great interest to both developmental and evolutionary biologists, because what we see are major transitions in form not over long periods of time, but within a single generation.

We are so much accustomed to see a difference in structure between
the embryo and the adult, that we are tempted to look at this
difference as in some necessary manner contingent on growth. But there
is no reason why, for instance, the wing of a bat, or the fin of a
porpoise, should not have been sketched out with all their parts in
proper proportion, as soon as any part became visible. In some whole
groups of animals and in certain members of other groups this is the
case, and the embryo does not at any period differ widely from the
adult: thus Owen has remarked in regard to cuttlefish, “There is no
metamorphosis; the cephalopodic character is manifested long before
the parts of the embryo are completed.” Landshells and fresh-water
crustaceans are born having their proper forms, whilst the marine
members of the same two great classes pass through considerable and
often great changes during their development. Spiders, again, barely
undergo any metamorphosis. The larvae of most insects pass through a
worm-like stage, whether they are active and adapted to diversified
habits, or are inactive from being placed in the midst of proper
nutriment or from being fed by their parents; but in some few cases,
as in that of Aphis, if we look to the admirable drawings of the
development of this insect, by Professor Huxley, we see hardly any
trace of the vermiform stage.

Why do some lineages undergo amazing processes of morphological change over their life histories, while others quickly settle on a single form and stick with it through their entire life? In some cases, we can even find closely related species where one goes through metamorphosis, and another doesn’t; this is clearly a relatively labile character in evolution. And one of the sharpest, clearest examples of this fascinating flexibility is found in the sea urchins.

[Read more…]

Return of the Son of the Bride of Haeckel

The Discovery Institute is so relieved — they finally found a textbook that includes a reworked version of Haeckel’s figure. Casey Luskin is very excited. I’m a little disappointed, though: apparently, nobody at the Discovery Institute reads Pharyngula. I posted a quick summary in September of 2003 that went through several textbooks, and showed a couple of examples where redrawn versions of Haeckel’s diagram were used. More recently, I posted a fairly exhaustive survey by Patrick Frank of the use of that diagram since 1923, which showed that it was rare, and that the concept of recapitulation was uniformly criticized. Really, guys, the horse of recapitulationism is dead. Biologists riddled it with bullets in the 19th century, and have periodically kicked it a few times to be sure. For Intelligent Design creationists to show up over a century later and flog the crumbling bones of a long extinguished horse and crow victory is awfully silly.

So how can you still find any vestiges of Haeckel’s work in textbooks?

[Read more…]

Step away from that ladder

We’ve often heard this claim from creationists: “there is no way for genetics to cause an increase in complexity without a designer!”. A recent example has been Michael Egnor’s obtuse caterwauling about it. We, including myself, usually respond in the same way: of course it can. And then we list examples of observations that support the obviously true conclusion that you can get increases in genetic information over time: we talk about gene duplication, gene families, pseudogenes, etc., all well-documented manifestations of natural processes that increase the genetic content of the organism. It happens, it’s clear and simple, get over it, creationists.

Maybe we’ve been missing the point all along, though. The premise of that question from the creationists is what they consider a self-evident fact: that evolution posits a steady increase in complexity from bacteria to Homo sapiens, the deep-rooted idea of the scala natura, a ladder of complexity from simple to complex. Their argument is that the ladder cannot be climbed, and our response is usually, “sure it can, watch!” when perhaps a better answer, one that is even more damaging to their ideology, is that there is no ladder to climb.

That’s a tougher answer to explain, though, and what makes it even more difficult is that there is a long scientific tradition of pretending the ladder is there. Larry Moran has an excellent article on this problem (Alex has a different perspective), and I want to expand on it a little more.

[Read more…]

Ascidian evo-devo

Here are three animals. If you had to classify them on the basis of this superficial glimpse, which two would you guess were most closely related to each other, and which one would be most distant from the others?

i-3c5822c1c21ece64c8664c4ac32d9b63-ascidian.jpg

i-56ee51e328b10451feb168cd9bab0ea5-amphioxus.jpg

i-703ea1f1beca939b01785054c9529b6c-fish_larvae.jpg

On the left is a urochordate, an ascidian, a sessile, filter-feeding blob that is anchored to rocks or pilings and sucks in sea water to extract microorganismal meals. In the middle is a cephalochordate, Amphioxus, also a filter feeder, but capable of free swimming. On the right are some fish larvae. All are members of the chordata, the deuterostomes with notochords. If you’d asked me some years ago, I would have said it’s obvious: vertebrates must be more closely related to the cephalochordates—they have such similar post-cranial anatomies—while the urochordates are the weirdos, the most distant cousins of the group. Recent developments in molecular phylogenies, though, strongly suggest that appearances are deceiving and we vertebrates are more closely related to the urochordates than to the cephalochordates, implying that some interesting evolutionary phenomena must have been going on in the urochordates. We’d expect to see some conservation of developmental mechanisms because of their common ancestry, but the radical reorganization of their morphology suggests that there ought also be some significant divergence at a deep level. That makes the urochordates a particularly interesting group to examine.

[Read more…]

No rest for the wicked

Didn’t I just say “Woo hoo” yesterday? False alarm. Scarcely do I clear one set of major tasks away than another set rise up. I already mentioned that I was going to be the speaker at the Humanists of Minnesota banquet on Saturday evening. I neglected to tell you all that I’m leaving for the University of Michigan tomorrow to give the keynote at the Genetic Programming Theory and Practice Workshop.

I know virtually nothing about genetic programming, so this is a wonderful opportunity to learn something about it.

Since I’m certainly not going to be able to tell them a thing about genetic programming, I’m planning to tell them a little about my own skewed perspective as one of those metazoan-centric fans of developmental processes. I’m hoping they might learn a little something from me, and that we’ll all have some fun with ideas about embryos. Here’s my very brief abstract:

A developmental biologist’s view of evolution

The ongoing integration of molecular genetics, developmental biology, and evolution (the field of evo-devo) is stirring up new ideas and new questions. I will tell a few stories from the evo-devo literature that illustrate the importance of the principles of developmental plasticity and developmental constraint on evolutionary trajectories — showing that these are two competing and complementary forces operating on multicellular organisms. My argument is that the contingencies of developmental architectures may well be as significant a force on evolutionary histories as selection.

Next week I get to slack off. No, wait, there’s also…

Sperm in action

This is a beautifully done movie, although it does get a bit silly in the end.

One point this brought to mind: have you ever looked at sperm? They’re amazing. We humans do go through a single-celled haploid stage which is the focus of some very intense selection pressure, and humans in their haploid phase possess some impressive abilities. No brains, but the sperm are motile and exhibit seeking behavior. Eggs are also wonderful — they are precisely balanced on the edge of criticality, ready to erupt into a cascade of changes with a single stimulus. It’s easy to dismiss gametes as blobs and slime, but they have all the charm and complexity of bacteria … and I say that completely non-ironically.

(via Street Anatomy)