This is the fourth part of a series about symmetry in origami.
Given an origami model, what are the possible symmetric colorings?
This is a question I posed in an earlier post, and I said I didn’t know the solution. I thought about it a lot, and I found the solution. I will write up a mathematical proof in a later post. Here I will just explain the result.
A brief review: Each origami model has an associated shape symmetry group, which is the set of all transformations (rotations and reflections) which leave the shape unchanged. There is also an associated color symmetry group, which leaves the shape and colors unchanged. Then there is the pattern symmetry group, which may swap the identities of some of the colors, but leaves the color patterns unchanged. In this post, C is the color symmetry group, and P is the pattern symmetry group.
I defined a “symmetric coloring” to be one where P is “large” and C is “small”. I didn’t say how large P needed to be, or how small C needed to be, but it doesn’t matter. I found a method that can construct any and all symmetric colorings.
Fundamental domains
Suppose we want to find a symmetrical coloring of a cube. First question: Are we assigning a color to each face, each vertex, or each edge? We want to find a general solution that will work in all three cases, as well as any more complicated case. So the first thing we need to do is divide the cube into fundamental domains.