Coming to Life

Books from Nobel laureates in molecular biology have a tradition of being surprising. James Watson(amzn/b&n/abe/pwll) was catty, gossipy, and amusingly egotistical; Francis Crick(amzn/b&n/abe/pwll) went haring off in all kinds of interesting directions, like a true polymath; and Kary Mullis(amzn/b&n/abe/pwll) was just plain nuts. When I heard that Christiane Nüsslein-Volhard was coming out with a book, my interest and curiousity were definitely piqued. The work by Nüsslein-Volhard and Wieschaus has shaped my entire discipline, so I was eagerly anticipating what her new book, Coming to Life: How Genes Drive Development(amzn/b&n/abe/pwll) would have to say.

It wasn’t what I expected at all, but I think readers here will be appreciative: it’s a primer in developmental biology, written for the layperson! Especially given a few of the responses to my last article, where the jargon seems to have lost some people, this is going to be an invaluable resource.

[Read more…]

Generic bumps and recycled genetic cascades

How do you make a limb? Vertebrate limbs are classic models in organogenesis, and we know a fair bit about the molecular events involved. Limbs are induced at particular boundaries of axial Hox gene expression, and the first recognizable sign of their formation is the appearance of a thickened epithelial bump, the apical ectodermal ridge (AER). The AER is a signaling center that produces, in particular, a set of growth factors such as Fgf4 and Fgf8 that trigger the growth of the underlying tissue, causing the growing limb to protrude. In addition, there’s another signaling center that forms on the posterior side of the growing limb, and which secretes Sonic Hedgehog and defines the polarity of the limb—this center is called the Zone of Polarizing Activity, or ZPA. The activity of these two centers together define two axes of the limb, the proximo-distal and the anterior-posterior. There are other genes involved, of course—this is no simple process—but that’s a very short overview of what’s involved in the early stages of making arms and legs.

Now, gentlemen, examine your torso below the neck. You can probably count five protuberances emerging from it; my description above accounts for four of them. What about that fifth one? (Not to leave the ladies out, of course—you’ve also got the same fifth bump, it’s just not quite as obvious, and it’s usually much more tidily tucked away.)

[Read more…]

David Prentice’s shoddy stem cell scholarship

A reader sent me copy of a letter that will be published in Science this week, criticizing the dishonest tactics of the anti-scientific adult stem cell “advocates” (in quotes because they aren’t really science advocates of any kind—they’re only using it as an issue to limit stem cell research.) Anyway, it raises the interesting question of who you’re going to believe: scientists with expertise in the issues under discussion, or a flunky for Sam Brownback and shill for the religious right?

[Read more…]

Diploblasts and triploblasts

i-ccbc028bf567ec6e49f3b515a2c4c149-old_pharyngula.gif

Carl Zimmer wrote on evolution in jellyfish, with the fascinating conclusion that they bear greater molecular complexity than was previously thought. He cited a recent challenging review by Seipel and Schmid that discusses the evolution of triploblasty in the metazoa—it made me rethink some of my assumptions about germ layer phylogeny, anyway, so I thought I’d try to summarize it here. The story is clear, but I realized as I started to put it together that jeez, but we developmental biologists use a lot of jargon. If this is going to make any sense to anyone else, I’m going to have to step way back and explain a collection of concepts that we’ve been using since Lankester in the 19th century.

[Read more…]

Stem cell bait-and-switch

I’m taking it easy here in the fabulous Van Dusen mansion, a bed and breakfast where I’m staying tonight, and I thought I’d browse through the stem cell legislation that’s being considered in the senate right now. It’s strange: one substantive bill has come up from the House, and all of a sudden two more bills have been proposed on the floor of the Senate.

[Read more…]

The evolution of deuterostome gastrulation

i-ccbc028bf567ec6e49f3b515a2c4c149-old_pharyngula.gif

Do vertebrate embryos exhibit significant variation in their early development? Yes, they do—in particular, the earliest stages show distinct differences that mainly reflect differences in maternal investment and that cause significant distortions of early morphology during gastrulation. However, these earliest patterns represent workarounds, strategies to accommodate one variable (the amount of yolk in the egg), and the animals subsequently reorganize to put tissues into a canonical arrangement. Observations of gene expression during gastrulation are revealing deeper similarities that are common in all deuterostomes—not just vertebrates, but also the invertebrate chordates (tunicates and cephalochordates) and echinoderms.

What does all that mean? If you think of development as a formal dance, the earliest stages are like the prelude; everyone is getting out of their chairs around the ballroom, looking for partners and working their way towards the floor. The dispositions of the dancers are variable and somewhat chaotic, and vary from dance to dance. Once they get to their positions, however, we’re finding that not only is there a general similarity in their arrangements, but they’re all dancing to the very same tune. In this case, one of the repeated motifs in that tune is a gene, Nodal, which is active in gastrulation and shows a similar pattern in animal after animal.

[Read more…]

Moran on theistic evolution

Eugenie Scott is going to have to increase the length of her list of scientists out to “destroy religion.” Larry Moran (fans of Talk.Origins will recognize the name) has posted an article, Theistic Evolution: The Fallacy of the Middle Ground.

There is no continuum between science and non-science. You can’t practice methodological naturalism 99% of the time and still claim to be a scientist. It’s all or nothing. Either your explanations of the natural world are scientific or they are not.

It’s too bad his site isn’t set up like a blog—you can’t make comments there, so you’ll have to settle for making howls of outrage here, or tracking him down on usenet to complain there.

I also like this wonderful quote:

My practise as a scientist is atheistic. That is to say, when I set up an experiment I assume that no god, angel, or devil is going to interfere with its course; and this assumption has been justified by such success as I have achieved in my professional career. I should therefore be intellectually dishonest if I were not also atheistic in the affairs of the world. And I should be a coward if I did not state my theoretical views in public.

J.B.S. Haldane

Scientists…in disagreement!

Yesterday, I reposted an article on homology within the neck and shoulder, which describes an interesting technique of using patterns of gene expression to identify homologous cellular pools; the idea is that we can discern homology more clearly by looking more closely at the molecular mechanisms, rather than focusing on final morphology and tissue derivation. Trust me, if you don’t want to read it all—it’s cool stuff, and one of the interesting points they make is that they’ve traced the fate of a particular bone not found in us mammals, but common in our pre-synapsid ancestors, the cleithrum. They argue from a common cellular origin that this bone has been reshaped into a ridge on our shoulder blade, the scapular spine.

As many readers might know, though, the word “homology,” especially when coupled with a novel technique for its determination, is always good for an argument. This one is no exception.

[Read more…]