Spider gastrulation

spiderembryo

It’s my first completely free day of Christmas break! Grades are all submitted, nothing is hanging over my head, but I still got up at 5:30am and needed to do something, so I learned about spider gastrulation.

This was a disgraceful gap in my knowledge — I’ve worked on insects and on vertebrates, and am fairly familiar with gastrulation in those kinds of organisms, but one thing I did know is that there’s a lot of variation in the details of gastrulation, so every new clade seems to exhibit some novel way of tucking cells in to the early embryo. Spiders do it in a cool way.

[Read more…]

Gwen Pearson just ruined Christmas for everyone

The war on Christmas is over. Everyone just gave up in disgust. They read this story about reindeer parasites, complete with burrowing snot flies, vaginal maggot guns, and people picking maggots out of their eyes, and decided it just wasn’t worth it any more.

What kind of gun should I get to pick off flying reindeer? I’m thinking of spending Christmas Eve patrolling the neighborhood and making sure none of those diseased vermin get anywhere near my house.

Amazing what you can accomplish with misleading chart design!

That’s a direct quote from Minnesota’s own Powerline Blog, and I don’t think they were aware of the irony. I think they think they were referring to this chart, which demonstrates the correlation between CO2 levels and global temperature change over the last century or so.

120715_chart_120315_co2

Thats actually good chart design: axes are appropriate, a lot of data is packed into it very cleanly, and you can see the relationships clearly. Powerline doesn’t like that.

Looks pretty persuasive, doesn’t it? The casual observer would think that we are looking at record levels of CO2–which is not a pollutant, but rather makes like on Earth possible–and record high temperatures. How can anyone dispute the causal connection?

[Read more…]

Elon Musk is a terrible human being

elon-musk-mars-plan

He’s very concerned about World War III…but not because of the horrific loss of life or the destruction of civilization, but because it might set back plans to colonize Mars. Therefore, we have to hurry up and get humankind into space before we blow ourselves up.

I don’t think we can discount the possibility of a third World War. You know, in 1912 they were proclaiming a new age of peace and prosperity, saying that it was a golden age, war was over. And then you had World War I followed by World War II followed by the Cold War. So I think we need to acknowledge that there’s certainly a possibility of a third World War, and if that does occur it could be far worse than anything that’s happened before. Let’s say nuclear weapons are used. I mean, there could be a very powerful social movement that’s anti-technology.

[Read more…]

But wait…solar energy isn’t consequence-free!

solarfarm

Everyone is talking about that stupid town that voted against solar energy because it would suck up the energy of the sun. So I read the story from the local paper, and hey, it wasn’t as stupid as it was made out to be, and there are actually valid arguments against solar farms.

I’m entirely in favor of more wind and solar power, but let’s not pretend there are no problems with them. The residents of Woodland, NC brought up real concerns.

[Read more…]

Friday Cephalopod: Our scouts have been sighted!

We’ll have to advance the invasion plan. A scout squad of paper nautiluses have been exposed off the coast of California.

Several of the scouts bravely tried to wrest the camera from the spy, but failed. We’re going to have to send some muscle to accompany the reconnaissance patrols from now on — all we needed was a few Humboldt squid to have been able to completely suppress this exposure.

Puny humans. Nothing will stop the massive Cephalopod Armada!

Axon guidance mechanisms are thoroughly evolutionary in origin

The Discovery Institute thinks axon guidance mechanisms are evidence for intelligent design. I think they just trawl the scientific literature for the words “complex” and “purpose” and get really excited about the imaginary interpretations in their head of papers they don’t really understand.

There’s no mention of evolution here, nor in the full paper in Science. The paper, however, does use a notable word: purpose. “These findings identify NELL2 as an axon guidance cue and establish Robo3 as a multifunctional regulator of pathfinding that simultaneously mediates NELL2 repulsion, inhibits Slit repulsion, and facilitates Netrin attraction to achieve a common guidance purpose.” In fact, they use it again in their concluding sentence:

Our results also show that Robo3.1 serves as an integrative hub: Its three diverse actions in response to three different cues — mediating NELL2 repulsion from the motor column, potentiating midline Netrin-1 attraction, and antagonizing midline Slit repulsion — act simultaneously, are mutually reinforcing, and serve the common purpose of steering commissural axons toward and across the midline. This multiplicity of mechanisms likely helps ensure high-fidelity steering of axons to their targets.

It’s one of those occasions in biology (not rare) when the term “intelligent design,” despite other merits, falls flat as a description. This is super-intelligent ultra-design.

Getting axons in the nervous system to their proper destinations actually is a very complex problem: much wires, many connections, wow. If you look at complex systems like the brain, you shouldn’t be surprised that the mechanisms are complex. And further, the functional requirements of those systems, which may require that Neuron A navigate to Target B in order for the pattern to work, it’s easy to say that the purpose of those mechanisms is to hook A up to B. It does not imply the existence of a designer, only the existence of functional constraints.

But also, they picked a system with which I’m fairly familiar. Way back in the 1990s, this is what I did: try to figure out the rules behind commissural neuron migration, the very stuff the DI is talking about. I was focusing on a cellular approach — I was observing neurons that grew across the midline to contact cells on the opposite side of the nervous system — and I reached some of the same general answers that more recent research has discovered. The question was why an axon would grow all the way across the nervous system to reach a target that had a closer equivalent right next door, on the same side.

Here’s a simple cartoon version of the problem. Neuron A is supposed to, has the function of, has the purpose of connecting to Neuron B; in the normal animal, it grows all the way across the midline to touch the contralateral (on the opposite side) B neuron.

comm1

But the question remains: there’s a left B and a right B. Why doesn’t neuron A on the left side take the lazy shortcut and grow straight to the left B?

comm2

The answer we came up with in my work is that there is a hierarchy of interactions. That A finds the midline much more attractive than B at first, so it grows to the middle of the animal, and then, after a brief flirtation with the midline, changes its priorities to favor B cells after all, and just keeps growing across the midline to find the other B. (Actually, what we found that was most important in changing the left A’s affinities was contact with the right A, which arrived at the midline at about the same time.)

We worked that out with direct observations of neuron behavior, and also a series of experiments in which we killed various cells A would interact with. What we didn’t know at all was what molecules were involved.

And that’s where the Discovery Institute is so wrong. We had a cellular description, but when other laboratories in the late 1990s started discovering the molecular signals involved, molecules like Netrin and Robo and Slit, it was a wonderful revelation. It’s like how on one level, you can see a car and watch it run and figure out general things like wheels and steering, but when you get out the wrenches and start taking the engine apart, you can really see the mechanistic basis of its operation. Every step deeper into the guts of the problem tends to reinforce our understanding that it’s fully natural, and was built around natural processes.

The other big shift was that we could now generalize to other organisms and pick apart the evolutionary foundations to these mechanisms. I was looking at specific cells in the grasshopper embryo, and we could see that those very same cells are present in other arthropods, but we didn’t have the tools to do molecular comparisons. Identifying the molecules responsible meant that we could ask if they were present in other organisms, whether they were conserved, and whether these molecular processes were used in multiple cells, rather than just the few I studied.

If the Discovery Institute had looked just a little bit harder (or had not intentionally chosen to ignore all the papers that studied the evolution of axon guidance mechanisms), they might have noticed that there’s a very interesting literature on how these molecules evolved. There are plenty of papers that survey the evolutionary pattern of axon guidance mechanisms.

When did axons and their guidance mechanisms originate in animal evolution? Many axon guidance receptors (e.g. type II RPTPs, Eph RTKs, and the DCC, UNC5 and Robo families) are related to CAMs of the immunoglobulin superfamily, suggesting that axon guidance mechanisms evolved from signaling pathways involved in general cell–cell or cell–ECM adhesion in an ancestral animal. The simplest animals with nervous systems are cnidarians, which have isopolar neurons arranged in ‘nerve nets’; simpler animals (e.g. sponges, mesozoans) have no recognizable neurons. Thus, neurons and their guidance mechanisms must have evolved in a common ancestor of all metazoans, but after the divergence of sponges (Figure 1). Intriguing recent work suggests that sponges, which have no discernible nervous systems, nevertheless contain a diverse set of receptor tyrosine kinases and RPTPs [54,102]. Thus, many of these molecules could have evolved prior to (and may have been necessary for) the evolution of nervous systems in the urbilaterian.

Many axon guidance mechanisms are not only conserved at the molecular level, but also at the level of the body plan (reviewed in [103]). For example, netrins are secreted from ectodermal cells at the ventral midline of nematodes and insects and from the floorplate of the spinal cord of vertebrates (dorsal midline ectoderm, homologous to the ventral ectoderm of insects). Thus, in an ancestral animal, circumferential movements of axons or cells around the dorsoventral axis were probably oriented towards or away from a midline netrin source, and perhaps also from a midline Slit source. Studies in the coming years are likely to reveal the extent to which the patterning roles of other guidance mechanisms have been retained during the evolution of different body plans, and may help further outline the likely organization of the nervous system of our primitive ancestors.

These molecules are also multi-functional and play roles in other systems than the nervous system. They’re important in organogenesis and the maturation of the reproductive system, and are part of an interactive network of cell signaling molecules. It’s really complex, but what the DI doesn’t appreciate is that biology and evolutionary processes are really, really good at generating complexity. Look ot all the things the SLIT-ROBO system does!

slit-robo

You might notice that they play a role in cancer signaling, too, but then everything does.

Once again, the Intelligent Design creationists completely miss the point. The work on these axon patterning systems has been deeply informed by evolutionary perspectives, while the DI is reduced to mining for mentions of “complexity” in papers, as if that somehow supports their ignorance-based position.


Chisholm A, Tessier-Lavigne M (1999) Conservation and divergence of axon guidance mechanisms. Curr Opin Neurobiol. 9(5):603-15. (Note that this paper came out very shortly after the discovery of netrins, by the fellow who discovered them — evolutionary biology has been part of this story from the very beginning.)

Dickinson RE1, Duncan WC (2010) The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system. Reproduction 139(4):697-704.