What is science?

(I will be traveling for a few weeks and rather than put this blog on hiatus, thought that I would continue with my weekday posting schedule by reposting some of the very early items, for those who might have missed them the first time around.)

Because of my interest in the history and philosophy of science I am sometimes called upon to answer the question “what is science?” Most people think that the answer should be fairly straightforward. This is because science is such an integral part of our lives that everyone feels that they intuitively know what it is and think that the problem of defining science is purely one of finding the right combination of words that captures their intuitive sense.

But as I said in my previous posting, strictly defining things means having demarcation criteria, which involves developing a set of necessary and sufficient conditions, and this is extremely hard to do even for seemingly simple things like (say) defining what a dog is. So I should not be surprising that it may be harder to do for an abstract idea like science.

But just as a small child is able, based on its experience with pets, to distinguish between a dog and a cat without any need for formal demarcation criteria, so can scientists intuitively sense what is science and what is not science, based on the practice of their profession, without any need for a formal definition. So scientists do not, in the normal course of their work, pay much attention to whether they have a formal definition of science or not. If forced to define science (say for the purpose of writing textbooks) they tend to make up some kind of definition that sort of fits with their experience, but such ad-hoc formulations lack the kind of formal rigor that is strictly required of a philosophically sound demarcation criterion.

The absence of an agreed-upon formal definition of science has not hindered science from progressing rapidly and efficiently. Science marches on, blithely unconcerned about its lack of self-definition. People start worrying about definitions of science mainly in the context of political battles, such as those involving so-called intelligent design creationism (or IDC), because advocates of IDC have been using this lack of a formal definition to try to define science in such a way that their pet idea be included as science, and thus taught in schools as part of the science curriculum and as an alternative to evolution.

Having a clear-cut demarcation criterion that defines science and is accepted by all would settle this question once and for all. But finding this demarcation criterion for science has proven to be remarkably difficult.

To set about trying to find such criteria, we do what we usually do in all such cases, we look at all the knowledge that is commonly accepted as science by everyone, and see if we can see similarities among these areas. For example, I think everyone would agree that the subjects that come under the headings of astronomy, geology, physics, chemistry, and biology, and which are studied by university departments in reputable universities, all come under the heading of science. So any definition of science that excluded any of these areas would be clearly inadequate, just as any definition of ‘dog’ that excluded a commonly accepted breed would be dismissed as inadequate.

This is the kind of thing we do when trying to define other things, like art (say). Any definition of art that excluded (say) paintings hanging in reputable museums would be considered an inadequate definition.

When we look back at the history of the topics studied by people in those named disciplines and which are commonly accepted as science, two characteristics stand out. The first thing that we realize is that for a theory to be considered scientific it does not have to be true. Newtonian physics is commonly accepted to be scientific, although it is not considered to be universally true anymore. The phlogiston theory of combustion is considered to be scientific though it has long since been overthrown by the oxygen theory. And so on. In fact, since all knowledge is considered to be fallible and liable to change, truth is, in some sense, irrelevant to the question of whether something is scientific or not, because absolute truth cannot be established.

(A caveat: Not all scientists will agree with me on this last point. Some scientists feel that once a theory is shown to be incorrect, it ceases to be part of science, although it remains a part of science history. Some physicists also feel that many of the current theories of (say) sub-atomic particles are unlikely to be ever overthrown and are thus true in some absolute sense. I am not convinced of this. The history of science teaches us that even theories that were considered rock-solid and lasted millennia (such as the geocentric universe) eventually were overthrown.)

But there is a clear pattern that emerges about scientific theories. All the theories that are considered to be science are (1) naturalistic and (2) predictive.

By naturalistic I mean methodological naturalism and not philosophical naturalism. The latter, I argued in an earlier posting where these terms were defined, is irrelevant to science.

By predictive, I mean that all theories that are considered part of science have the quality of having some explicit mechanism or structure that enable the users of these theories to make predictions, of saying what one should see if one did some experiment or looked in some place under certain conditions.

Note that these two conditions are just necessary conditions and by themselves are not sufficient. (See the previous posting for what those conditions mean.) As such they can only classify things into “may be science” (if something meets both conditions) or “not science” (if something does not meet either one of the conditions.) As such, these two conditions together do not make up a satisfactory demarcation criterion. For example, the theory that if a football quarterback throws a lot of interceptions his team is likely to lose, meets both naturalistic and predictive conditions, but it is not considered part of science.

But even though we do not have a rigorous demarcation criterion for science, the existence of just necessary conditions still has interesting implications, which we shall explore in later postings.

What do creationist/ID advocates want-III?

(I will be traveling for a few weeks and rather than put this blog on hiatus, thought that I would continue with my weekday posting schedule by reposting some of the very early items, for those who might have missed them the first time around.)

It is time to tackle head-on the notion of what is meant by the ‘materialism’ that the creationist/ID camp find so distasteful. (See part I and part II for the background.)

The word materialism is used synonymously with ‘naturalism’ and perhaps the clearest formulation of what it means can be found in the writings of paleontologist George Gaylord Simpson who said in Tempo and Mode in Evolution (p. 76.):

“The progress of knowledge rigidly requires that no non-physical postulate ever be admitted in connection with the study of physical phenomena. We do not know what is and what is not explicable in physical terms, and the researcher who is seeking explanations must seek physical explanations only.” (Emphasis added)

Simpson was by no means an atheist (as far as I can tell) but he is saying something that all scientists take for granted, that when you seek a scientific explanation for something, you look for something that has natural causes, and you do not countenance the miraculous or the inscrutable. This process is properly called ‘methodological naturalism’, to be contrasted with ‘philosophical naturalism.’

Despite the polysyllabic terminology, the ideas are easy to understand. For example, if you hear a strange noise in the next room, you might wonder if it is a radiator or the wind or a mouse or an intruder and you investigate each possible cause, looking for evidence. For each question that you pose, the answer is sought in natural causes. You would be unlikely to say “The noise in the next room is caused by God knocking over stuff.” In general, people don’t invoke God to explain the everyday phenomena of our lives, even though they might be quite religious.

Methodological naturalism is just that same idea. Scientists look for natural explanations to the phenomena they encounter because that is the way science works. Such an approach allows you to systematically investigate open questions and not shut off avenues of research. Any scientist who said that an experimental result was due to God intervening in the lab would be looked at askance, because that scientist would be violating one of the fundamental rules of operation. There is no question in science that is closed to further investigation of deeper natural causes.

Non-scientists sometimes do not understand how hard and frustrating much of scientific research is. People work for years and even decades banging their heads against brick walls, trying to solve some tough problem. What keeps them going? What makes them persevere? It is the practice of methodological naturalism, the belief that a discoverable explanation must exist and that it is only their ingenuity and skill that is preventing them from finding the solution. Unsolved problems are seen as challenges to the skills of the individual scientist and the scientific community, not as manifestations of God’s workings.

This is what, for example, causes medical researchers to work for years to find causes (and thus possibly cures) for rare and obscure diseases. Part of the reason is the desire to be helpful, part of it is due to personal ambition and career advancement, but an important part is also the belief that a solution exists that lies within their grasp.

It is because of this willingness to persevere in the face of enormous difficulty that science has been able to make the breakthroughs it has. If, at the early signs of difficulty in solving a problem scientists threw up their hands and said “Well, looks like God is behind this one. Let’s give up and move on to something else” then the great discoveries of science that we associate with Newton, Darwin, Einstein, Planck, Heisenberg, etc. would never have occurred.

For example, the motion of the perigee of the moon was a well-known unsolved problem for over sixty years after the introduction of Newtonian physics. It constituted a serious problem that resisted solution for a longer time than the problems in evolution pointed to by creationist/ID advocates. Yet no supernatural explanation was invoked, eventually the problem was solved, and the result was seen as a triumph for Newtonian theory.

So when creationist/ID advocates advocate the abandonment of methodological naturalism, they are not trying to ease just Darwin out of the picture. They are throwing out the operational basis of the entire scientific enterprise.

Philosophical naturalism, as contrasted with methodological naturalism, is the belief that the natural world is all there is, that there is nothing more. Some scientists undoubtedly choose to be philosophical naturalists (and thus atheists) because they see no need to have God in their philosophical framework, but as I said in an earlier posting, others reject that option and stay religious. But this is purely a personal choice made by individual scientists and it has no impact on how they do science, which only involves using methodological naturalism. There is no requirement in science that one must be a philosophical naturalist, and as I alluded to earlier, Gaylord Simpson was not a philosophical naturalist although he was a methodological naturalist.

The question of philosophical naturalism is, frankly, irrelevant to working scientists. Scientists don’t really care if their colleagues are religious or not. I have been around scientists all my life. But apart from my close friends, I have no idea what their religious beliefs are, and even then I have only a vague idea of what they actually believe. I know that some are religious and others are not. It just does not matter to us. Whether a scientist is a philosophical naturalist or not does not affect how his or her work is received by the community.

But what the creationist/ID advocates want, according to their stated goal of “If things are to improve, materialism needs to be defeated and God has to be accepted as the creator of nature and human beings” is to enforce the requirement that scientists reject both philosophical and methodological naturalism. They are essentially forcing two things on everyone:

  • Requiring people to adopt the creationist/ID religious worldview as their own.
  • Requiring scientists to reject methodological naturalism as a rule of operation for science.

In other words, creationist/ID advocates are not asking us to reject only Darwin or to turn the clock back to the time just prior to Darwin, they want us to go all the way back to before Copernicus, and reject the very methods of science that has enabled it to be so successful. They want us to go back to a time of rampant and unchecked superstition.

This is probably not a good idea…

What do ID advocates want?

(I will be traveling for a few weeks and rather than put this blog on hiatus, thought that I would continue with my weekday posting schedule by reposting some of the very early items, for those who might have missed them the first time around.)

In an earlier posting, I spoke about how those who view Darwin’s ideas as evil see it as the source of the alleged decline in morality. But on the surface, so-called ‘intelligent design’ (or ID) seems to accept much of evolutionary ideas, reserving the actions of a ‘designer’ for just a very few (five, actually) instances of alleged ‘irreducible complexity’ that occur at the microbiological level.

This hardly seems like a major attack on Darwin since, on the surface, it seems to leave unchallenged almost all of the major ideas of the Darwinian structure such as the non-constancy of species (the basic theory of evolution), the descent of all organisms from common ancestors (branching evolution), the gradualness of evolution (no discontinuities), the multiplication of species, and natural selection.
[Read more…]

Evolutionary theory and falsificationism

(I will be traveling for a few weeks and rather than put this blog on hiatus, thought that I would continue with my weekday posting schedule by reposting some of the very early items, for those who might have missed them the first time around.)

In response to a previous posting, commenter Sarah Taylor made several important points. She clearly articulated the view that evolutionary theory is a complex edifice that is built on many observations that fit into a general pattern that is largely chronologically consistent.

She also notes that one distinguishing feature of science is that there are no questions that it shirks from, that there are no beliefs that it is not willing to put to the test. She says that “What makes scientific theories different from other human proposals about the nature of the universe are their courage. They proclaim their vulnerabilities as their strengths, inviting attack.”

I would mostly agree with this. Science does not shy away from probing its weaknesses, although I would not go so far as to claim that the vulnerabilities are seen as strengths. What is true is that the ‘weaknesses’ of theories are not ignored or covered up but are seen as opportunities for further research. Since there is no such thing in science as infallible knowledge, there is no inherent desire to preserve any theory at all costs, and the history of science is full of once dominant theories that are no longer considered credible.

But having said all that, it is not necessarily true that finding just one contradiction with a theory is sufficient to overthrow the theory. In the context of the challenge to Darwinian theory by intelligent design (ID) advocates, Sarah’s statement that “All that any ID devotee has to do is to show ONE fossil ‘out of place’, to prove the theory doesn’t work. Just one horse shoulder blade in a Cambrian deposit somewhere in the world, and we can say goodbye to Darwin” is a little too strong.

Sarah’s view seems to be derived from the model of falsificationism developed by the philosopher of science Karl Popper (see his book Conjectures and Refutations: The Growth of Scientific Knowledge, 1963) who was trying to explain how science progresses. Afer showing that trying to prove theories to be true was not possible, Popper argued that what scientists should instead do is try to prove theories false by finding a single counter-instance to the theory’s predictions. If that happens, the theory is falsified and has to be rejected and replaced by a better one. Hence the only status of a scientific theory is either ‘false’ or ‘not yet shown to be false.’

But historians of science have shown that this model, although appealing to our sense of bravado, does not describe how science actually works. Scientists are loath to throw away perfectly productive theories on the basis of a few anomalies. If they did so, then no non-trivial theory would survive. For example, the motion of the perigee of the moon’s orbit disagreed with Newton’s theory for nearly sixty years. Similarly the stability of the planetary orbits was an unsolved problem for nearly 200 years.

Good theories are hard to come by and we cannot afford to throw them away at the first signs of a problem. This is why scientists are quite agreeable to treating such seeming counter-instances as research problems to be worked on, rather than as falsifying events. As Barry Barnes says in his T.S. Kuhn and Social Science (1982):
“In agreeing upon a paradigm scientists do not accept a finished product: rather they agree to accept a basis for future work, and to treat as illusory or eliminable all its apparent inadequacies and defects.”

Dethroning a useful theory requires an accumulation of evidence and problems, and the simultaneous existence of a viable alternative. It is like a box spring mattress. One broken spring is not sufficient to make the mattress useless, since the other springs can make up for it and retain the mattress’s functionality. It takes several broken springs to make the mattress a candidate for replacement. And you only throw out the old mattress if you have a better one to replace it with, because having no mattress at all is even worse. The more powerful and venerable the theory, the more breakdowns that must occur to make scientists skeptical of its value and open to having another theory replace it.

After a theory is dethroned due to a confluence of many events, later historians might point to a single event as starting the decline or providing the tipping point that convinced scientists to abandon the theory. But this is something that happens long after the fact, and is largely a rewriting of history.

So I do not think that finding one fossil out of place will dethrone Darwin. And ID does not meet the necessary criteria for being a viable alternative anyway, since it appeals to an unavoidable inscrutability as a factor in its explanatory structure, and that is an immediate disqualification for any scientific theory.

Natural selection and moral decay

(I will be traveling for a few weeks and rather than put this blog on hiatus, thought that I would continue with my weekday posting schedule by reposting some of the very early items, for those who might have missed them the first time around.)

In a previous posting, I discussed why some religious people found evolutionary theory so upsetting. It was because natural selection implies that human beings were not destined or chosen to be what they are.

While I can understand why this is upsetting to religious fundamentalists who believe they were created specially in God’s image and are thus part of a grand cosmic plan, there is still a remaining puzzle and that is why they are so militant in trying to have evolution not taught in schools or its teaching to be undermined by inserting fake cautions about its credibility. After all, if a person dislikes evolutionary theory for whatever reason, all they have to do is not believe it. [Read more…]

Why is evolutionary theory so upsetting to some?

(I will be traveling for a few weeks and rather than put this blog on hiatus, thought that I would continue with my weekday posting schedule by reposting some of the very early items, for those who might have missed them the first time around.)

One of the questions that sometimes occur to observers of the intelligent design (ID) controversy is why there is such hostility to evolutionary theory in particular. After all, if you are a Biblical literalist, you are pretty much guaranteed to find that the theories of any scientific discipline (physics, chemistry, geology, astronomy, in addition to biology) contradict many of the things taught in the Bible.

So what is it about evolution in particular that gets some people’s goat?
[Read more…]

Can we ever be certain about scientific theories?

(I will be traveling for a few weeks and rather than put this blog on hiatus, thought that I would continue with my weekday posting schedule by reposting some of the very early items, for those who might have missed them the first time around.)

A commenter to a previous posting raised an interesting perspective that requires a fresh posting, because it reflects a commonly held view about how the validity of scientific theories get established.

The commenter says:

A scientist cannot be certain about a theory until that theory has truly been tested, and thus far, I am unaware of our having observed the evolution of one species from another species. Perhaps, in time, we will observe this, at which point the theory will have been verified. But until then, Evolution is merely a theory and a model.

While we may have the opportunity to test Evolution as time passes, it is very highly doubtful that we will ever be able to test any of the various theories for the origins of the Universe.

I would like to address just two points: What does it mean to “test” a theory? And can scientists ever “verify” a theory and “be certain” about it?

Verificationism as a concept to validate scientific theories has been tried and found to be wanting. The problem is that any non-trivial theory generates an infinite number of predictions. All the predictions cannot be exhaustively verified. Only a sample of the possible predictions can be tested and there is no universal yardstick that can be used to measure when a theory has been verified. It is a matter of consensus judgment on the part of scientists as to when a theory becomes an accepted one, and this is done on a case-by-case basis by the practitioners in that field or sub-field.

This means, however, that people who are opposed to a theory can always point to at least one particular result that has not been directly observed and claim that the theory has not been ‘verified’ or ‘proven.’ This is the strategy adopted by ID supporters to attack evolutionary theory. But using this kind of reasoning will result in every single theory in science being denied scientific status.

Theories do get tested. Testing a theory has been a cornerstone of science practice ever since Galileo but it means different things depending on whether you are talking about an experimental science like chemistry and condensed matter physics, or a historical science like cosmology, evolution, geology, and astronomy.

Any scientific theory is always more than an explanation of prior events. It also must necessarily predict new observations and it is these predictions that are used to test theories. In the case of experimental sciences, laboratory experiments can be performed under controlled conditions in order to generate new data that can be compared with predictions or used to infer new theories.

In the case of historical sciences, however, observations are used to unearth data that are pre-existing but as yet unknown. Hence the ‘predictions’ may be more appropriately called ‘retrodictions’, in that they predict that you will find things that already exist. For example, in cosmology the retrodictions were the existence of a cosmic microwave background radiation of a certain temperature, the relative abundances of light nuclei, and so forth. The discovery of the planet Neptune was considered a successful ‘prediction’ of Newtonian theory, although Neptune had presumably always been there.

The testing of a historical science is analogous is to that of the investigation of a crime where the detective says things like “If the criminal went through the woods, then we should be able to see footprints.” This kind of evidence is also historical but is as powerful as those of futuristic predictions, so historical sciences are not necessarily at a lower level of credibility than experimental sciences.

Theories in cosmology, astronomy, geology, and evolution are all tested in this way. As Ernst Mayr (who died a few days ago at the age of 100) said in What Evolution Is (2001): “Evolution as a whole, and the explanation of particular evolutionary events, must be inferred from observations. Such inferences must be tested again and again against new observations, and the original inference is either falsified or considerably strengthened when confirmed by all of these tests. However, most inferences made by evolutionists have by now been tested successfully so often that they are accepted as certainties.” (emphasis added).

In saying that most inferences are ‘accepted as certainties’, Mayr is exaggerating a little. Ever since the turn of the 20th century, it has been accepted that scientific knowledge is fallible and that absolute certainty cannot be achieved. But scientists do achieve a remarkable consensus on deciding at any given time what theoretical frameworks they have confidence in and will be used to guide future research. Such frameworks have been given the name ‘paradigms’ by Thomas Kuhn in The Structure of Scientific Revolutions (1970).

When scientists say they ‘believe’ in evolution (or the Big Bang), the word is being used in quite a different way from that used in religion. It is used as shorthand to say that they have confidence that the underlying mechanism of the theory has been well tested by seeing where its predictions lead. It is definitely not “merely a theory and a model” if by the word ‘merely’ the commenter implies a theory that is unsupported or untested.

So yes, evolution, like all the other major scientific paradigms, both historical and experimental, has been well tested.

Wanted: ‘Godwin’s Law’-type rule for science

(I will be traveling for the next few weeks and rather than put this blog on hiatus, thought that I would continue with my weekday posting schedule by reposting some of the very early items, for those who might have missed them the first time around.)

Mike Godwin coined a law (now known as Godwin’s Law) that states: “As an online discussion grows longer, the probability of a comparison involving Nazis or Hitler approaches one.”

This makes sense. As the discussion drags on, people start running out of fresh or relevant arguments, begin repeating themselves, lose their tempers, reach for something new to say, and Hitler/Nazi comparisons inevitably follow.

But Godwin’s rule has been extended beyond its original intent and is now used as a decision rule to indicate that a discussion has ceased to be meaningful and should be terminated. In other words, as soon as the Hitler/Nazi comparison is brought into any discussion where it is not relevant, Godwin’s rule can be invoked to say that the discussion is over and the person who introduced the Hitler/Nazi motif has lost the argument.
[Read more…]

Evolution III: Scientific knowledge is an interconnected web

(I will be traveling for the next few weeks and rather than put this blog on hiatus, thought that I would continue with my weekday posting schedule by reposting some of the very early items, for those who might have missed them the first time around.)

In an <a href=http://blog.case.edu/mxs24/2005/02/09/evolution_ii_science_is_not_a_smorgasbordearlier posting, the question was posed as to whether it was intellectually consistent to reject the findings of an entire modern scientific discipline (like biology) or of a major theoretical structure (like the theory of evolution) while accepting all the other theories of science.

The short answer is no. Why this is so can be seen by examining closely the most minimal of creationist theories, the one that goes under the label of ‘intelligent design’ or ID.

ID supporters take great pains to claim that theirs is a scientific theory that has nothing to do with religion or God, and hence belongs in the school science curriculum. (This particular question whether ID can be considered a part of science or of religion will be revisited in a later posting. This is becoming a longer series than I anticipated…)

ID advocates say that there are five specific biochemical systems and processes (bacterial flagella and cilia, blood clotting, protein transport within a cell, the immune system, and metabolic pathways) whose existence and/or workings cannot be explained by evolutionary theory and that hence one has to postulate that such phenomena are evidence of design and of the existence of a designer.

The substance of their arguments is: “You can claim all the other results for evolutionary theory. What would be the harm in allowing these five small systems to have an alternative explanation?”

Leaving aside the many other arguments that can be raised against this position (including those from biologists that these five systems are hardly intractable problems for evolutionary theory), I want to focus on just one feature of the argument. Is it possible to accept that just these five processes were created by a ‘designer,’ while retaining a belief in all the other theories of science?

No you cannot. If some undetectable agent had intervened to create the cilia (say), then in that single act at a microscopic level, you have violated fundamental laws of physics such as the law of conservation of energy, the law of conservation of momentum, and (possibly) the law of conservation of angular momentum. These laws are the bedrock of science and to abandon them is to abandon some of the most fundamental elements of modern science.

So rejecting a seemingly small element of evolutionary theory triggers a catastrophe in a seemingly far-removed area of science, a kind of chaotic ‘butterfly effect’ for scientific theories.

Scientific theories are so interconnected that some philosophers of science have taken this to the extreme (as philosophers are wont to do) and argued that we can only think of one big scientific theory that encompasses everything. It is this entire system (and not any single part of it) that should be compared with nature.

Pierre Duhem in his The Aim and Structure of Physical Theory (1906) articulated this position when he declared that: “The only experimental check on a physical theory which is not illogical consists in comparing the entire system of the physical theory with the whole group of experimental laws, and in judging whether the latter is represented by the former in a satisfactory manner.” (emphasis in original)

Of course, in practical terms, we don’t do that. Each scientific subfield proceeds along its own path. And we know that there have been revolutions in one area of science that have left other areas seemingly undisturbed. But this interconnectedness is a reality and explains why scientific theories are so resistant to change. Scientists realize that changing one portion requires, at the very least, making some accommodations in theories that are connected to it, and it is this process of adjustments that takes time and effort and prevents trivial events from triggering changes.

This is why it usually requires a major crisis in an existing theory for scientists to even consider replacing it with a new one. The five cases raised by ID advocates do not come close to creating that kind of crisis. They are like flies in the path of a lumbering evolutionary theory elephant, minor irritants that can be ignored or swatted away easily.

Burden of proof-3: The role of negative evidence

In my previous post, I suggested that in science, the burden of proof lies with the proponent for the existence of some thing. The default assumption is non-existence. So if you propose the existence of something like electromagnetic radiation or neutrinos or N-rays, then you have to provide some positive evidence that it exists of a kind that others can try to replicate.

But not all assertions, even in science, need meet that positive evidence standard. Sometimes negative evidence, what you don’t see, is important too. Negative evidence is best illustrated by the famous Sherlock Holmes story Silver Blaze, in which the following encounter occurs:

Gregory [Scotland Yard detective]: “Is there any other point to which you would wish to draw my attention?”
Holmes: “To the curious incident of the dog in the night-time.”
Gregory: “The dog did nothing in the night-time.”
Holmes: “That was the curious incident.”

There are times when the absence of evidence can be suggestive. This is true with the postulation of universal laws. The substance of such laws (such as that the total energy is conserved) is that they hold in every single instance. But we cannot possibly examine every possibility. The reason that we believe these types of laws to hold is because of negative evidence, what we do not see. If someone postulates the existence of a universal law, the absence of evidence that contradicts it is taken as evidence in support of the law. There is a rule of thumb that scientists use that if something can happen, it will happen. So if we do not see something happening, that suggests that there is a law that prevents it. This is how laws such as baryon and lepton number conservation originated.

Making inferences from absence is different from proving a negative about the existence of something, be it N-rays or god. You can never prove that an entity doesn’t exist. So at least at the beginning, it is incumbent on the person who argues for the existence of something to provide at least some evidence in support of it. The case for the existence of entities (like neutrinos or X-rays or god) requires positive evidence. Once that has been done beyond some standard of reasonable doubt, then the burden can shift to those who argue for non-existence, to show why this evidence is not credible.

This rule about evidence was not followed in the run up to the attack on Iraq. The Bush administration simply asserted that Iraq had weapons of mass destruction without providing credible evidence of it. They then (aided by a compliant media) managed to frame the debate so that the burden of proof shifted to those who did not believe the weapons existed. Even after the invasion, when the weapons did not turn up, Donald Rumsfeld famously said “There’s another way to phrase that and that is that the absence of evidence is not the evidence of absence. It is basically saying the same thing in a different way. Simply because you do not have evidence that something does exist does not mean that you have evidence that it doesn’t exist.” But he was wrong. When you are asserting the existence of an entity, if you have not provided any evidence that they do exist, then the absence of evidence is evidence of absence.

It is analogous to criminal trials. People are presumed innocent until proven guilty, and the onus is on the prosecution to first provide some positive evidence. Once that is done, the accused usually has to counter it in some way to avoid the risk that the jury will find the evidence sufficiently plausible to find the accused guilty.

So the question boils down to whether believers in a god have provided prima facie evidence in support of their thesis, sufficient to shift the burden to those who do not believe in god to show why this evidence is not convincing. Personal testimony by itself is usually not sufficient in courts, unless it is corroborated by physical evidence or direct personal observation by other credible sources who have observed the same phenomenon.

One of the common forms of evidence that is suggested is that since many, many people believe in the existence of god, that should count as evidence. My feeling is that that is not sufficient. After all, there have been universal beliefs that have subsequently been shown to be wrong, such as that the Earth was located at the center of the universe.

Has the evidence for god met the standard that we would accept in science or in a court of law? I personally just don’t see that it has but that is a judgment that each person must make. Of course, people can choose to not require that the evidence for god meet the same standard as for science or law, and if that is the case, then that pretty much ends the discussion. But at least we can all agree as to why we disagree.