Big Bang for beginners-14: Does the Big Bang theory violate the second law of thermodynamics?

(My latest book God vs. Darwin: The War Between Evolution and Creationism in the Classroom has just been released and is now available through the usual outlets. You can order it from Amazon, Barnes and Noble, the publishers Rowman & Littlefield, and also through your local bookstores. For more on the book, see here. You can also listen to the podcast of the interview on WCPN 90.3 about the book.)

For previous posts in this series, see here.

In the previous post, I showed that the creation of the universe does not, as is sometimes thought, violate the law of conservation of energy, otherwise known as the first law of thermodynamics.

Another supposed problem that disappears under close examination deals with entropy. Entropy is a quantity that has a precise definition in science but whose meaning has not become as familiar to the layperson as other scientific terms like energy. It can be loosely related to what we call the level of disorder or the loss of information or the amount of ‘useless’ energy (i.e., energy that cannot be utilized to perform work). So for example a system that is more disordered (a sock drawer in which the socks have been unceremoniously dumped) has a higher entropy than an ordered system (where the socks are neatly arranged in matching pairs.) Similarly a state in which information decreases or the amount of useless energy increases can be said to be a state in which entropy in increasing.
[Read more…]

Big Bang for beginners-13: Does the Big Bang theory violate the law of conservation of energy?

(My latest book God vs. Darwin: The War Between Evolution and Creationism in the Classroom has just been released and is now available through the usual outlets. You can order it from Amazon, Barnes and Noble, the publishers Rowman & Littlefield, and also through your local bookstores. For more on the book, see here. You can also listen to the podcast of the interview on WCPN 90.3 about the book.)

For previous posts in this series, see here.

Although the universe is mostly empty space (leaving aside for the moment dark energy and dark matter), there is quite a lot of matter in it. Some of it is in dense clumps that we call planets, stars, and galaxies. The rest is far more dilute and consists of interstellar gases and dust. And quite a lot of it is in the form of massless photons. So the question naturally arises: where did all this stuff come from? Doesn’t it require a massive input of energy right at the beginning that violates the law of conservation of energy (also known as the first law of thermodynamics), one of the bedrock principles of science? The answer is simple: No.
[Read more…]

Big Bang for beginners-12: Measuring the rate of expansion of the universe

(My latest book God vs. Darwin: The War Between Evolution and Creationism in the Classroom has just been released and is now available through the usual outlets. You can order it from Amazon, Barnes and Noble, the publishers Rowman & Littlefield, and also through your local bookstores. For more on the book, see here. You can also listen to the podcast of the interview on WCPN 90.3 about the book.)

For previous posts in this series, see here.

We seem to be living in a runaway expanding universe. Given that we are confined to such a tiny region of what seems like an infinite space, how can we know so much about it? It is indeed a tribute to the doggedness of the scientific endeavor that we can investigate the universe so methodically and tease out answers to questions that at first glance might seem hopelessly out of reach. In this post, I want to give some further background about how we have figured out some of this information.

[Read more…]

Big Bang for beginners-11: Relativity theory

(My latest book God vs. Darwin: The War Between Evolution and Creationism in the Classroom has just been released and is now available through the usual outlets. You can order it from Amazon, Barnes and Noble, the publishers Rowman & Littlefield, and also through your local bookstores. For more on the book, see here. You can also listen to the podcast of the interview on WCPN 90.3 about the book.)

For previous posts in this series, see here.

So far I have been simply describing what the Big Bang theory says without giving much of the theoretical background. But Einstein’s General Theory of Relativity (like Darwin’s theory of evolution by natural selection) has had such a profound effect on our relationship with the rest of the universe that I feel obliged to give readers, at least for cultural purposes, a glimpse of what the theory is and why it is so powerful, even if it remains obscure in its details. So for the sake of greater completeness and for the benefit of those who want to know more, in this post and the next I will give some of the theoretical background to what I have been saying so far, and hope that even those who are averse to algebra will stick with me through it and get some of the flavor of how the theory works.
[Read more…]

Big Bang for beginners-10: The cosmological constant

(My latest book God vs. Darwin: The War Between Evolution and Creationism in the Classroom has just been released and is now available through the usual outlets. You can order it from Amazon, Barnes and Noble, the publishers Rowman & Littlefield, and also through your local bookstores. For more on the book, see here. You can also listen to the podcast of the interview on WCPN 90.3 about the book.)

For previous posts in this series, see here.

To understand what is going on with dark energy, we need to look at something called the cosmological constant.

Einstein’s General Theory of Relativity, when expressed as equations in their most general form, contains a constant term (called the cosmological constant) whose value is unspecified by the theory itself but influences how the universe evolves with time. A positive value for this constant would have the effect of acting like an outward pressure trying to ‘push’ the universe apart, counteracting the gravitational attraction that is trying to pull it together. A zero value would do nothing, leaving gravity as the only (attractive) force. A negative value would be like a ‘pull’, adding to the attractive force of gravity.
[Read more…]

Big Bang for beginners-9: Dark energy

(My latest book God vs. Darwin: The War Between Evolution and Creationism in the Classroom has just been released and is now available through the usual outlets. You can order it from Amazon, Barnes and Noble, the publishers Rowman & Littlefield, and also through your local bookstores. For more on the book, see here. You can also listen to the podcast of the interview on WCPN 90.3 about the book.)

For previous posts in this series, see here.

In addition to the appearance of dark matter, another interesting development arose when observers tried to determine the curvature of the universe, an important fact in determining the ultimate fate of the universe.

To understand this consider, as an analogy, a ball thrown upwards from the surface of the planet. It will slow down as it goes up due to the gravitational attraction of the planet’s mass. But will the ball eventually fall back to the ground or will it escape from the planet and go on forever? The answer depends on both the speed of the ball and the size of the planet. For a given speed of the thrown ball, if the mass of the planet is below a certain value, its gravitational pull on the ball is not sufficient to bring it back and the ball will escape and travel out in space forever.
[Read more…]

Big Bang for beginners-8: Star formation and dark matter

(My latest book God vs. Darwin: The War Between Evolution and Creationism in the Classroom has just been released and is now available through the usual outlets. You can order it from Amazon, Barnes and Noble, the publishers Rowman & Littlefield, and also through your local bookstores. For more on the book, see here. You can also listen to the podcast of the interview on WCPN 90.3 about the book.)

For previous posts in this series, see here.

In the study of our universe so far, one fact becomes resoundingly clear. Humans occupy a tiny volume of the universe. All our scientific theories have been discovered using data that has been generated within that volume. What gives us the confidence that these same laws can be applied to distant regions as well? One answer is that we have no choice but to make that assumption. Another is that when do make such an extrapolation we get a reasonably satisfactory understanding of the behavior of distant stars and galaxies, thus justifying our decision.
[Read more…]

Big Bang for beginners-7: What lies beyond the edge of the universe?

(My latest book God vs. Darwin: The War Between Evolution and Creationism in the Classroom has just been released and is now available through the usual outlets. You can order it from Amazon, Barnes and Noble, the publishers Rowman & Littlefield, and also through your local bookstores. For more on the book, see here. You can also listen to the podcast of the interview on WCPN 90.3 about the book.)

For previous posts in this series, see here.

The idea of an infinite space that has always existed and in which everything else just moves around seems intuitively reasonable, at least to those who are comfortable with the concept of infinity. But the idea that there is no edge or boundary to the universe is much harder to grasp.

Going back to our raisin bread analogy, asking the question “What is beyond the edge of the universe?” is akin to asking what exists outside the space occupied by the dough. The answer is that there is no space outside the dough. The dough is all the space there is. This is where the raisin bread analogy starts to be misleading because we cannot help but view the dough as expanding inside the space of the oven, and it is hard to eliminate that unwanted extra image of oven walls. (If we wish, we can envisage a small portion of the dough and speak of the boundary of that portion alone, but that is not the boundary of space as a whole. It would be like speaking of the boundary of our Solar System or the Milky Way galaxy.)
[Read more…]

Big Bang for beginners-6: The evidence

(My latest book God vs. Darwin: The War Between Evolution and Creationism in the Classroom has just been released and is now available through the usual outlets. You can order it from Amazon, Barnes and Noble, the publishers Rowman & Littlefield, and also through your local bookstores. For more on the book, see here. You can also listen to the podcast of the interview on WCPN 90.3 about the book.)

For previous posts in this series, see here.

Why has the Big Bang theory become the standard model for understanding the origins of the universe? In the 15th century and earlier, most people thought that the Earth was the center of the universe and that the stars were embedded in a celestial sphere beyond the outer planets and that the size of the universe was not much larger than the Solar System. The Copernican revolution (with the publication of his book in 1543) displaced the Earth from the center of the universe. This led to suspicions that the universe could be very large, possibly even infinite, but there were at that time no good theories to explain its origins and structure.
[Read more…]

Big Bang for beginners-5: Some conceptual challenges

(My latest book God vs. Darwin: The War Between Evolution and Creationism in the Classroom has just been released and is now available through the usual outlets. You can order it from Amazon, Barnes and Noble, the publishers Rowman & Littlefield, and also through your local bookstores. For more on the book, see here. You can also listen to the podcast of the interview on WCPN 90.3 about the book.)

For previous posts in this series, see here.

Although the story of the Big Bang in its essence is quite simple and straightforward, it contains many fascinating subtleties that are worth exploring further. It is good to get some conceptual hurdles and misconceptions out of the way right now.

When we use the words ‘Big Bang’ it immediately conjure up certain images. We immediately think of familiar explosions, like bombs or firecrackers going off. We envisage a big noise and the exploding pieces hurtling away from the center of the explosion and spreading out into the surrounding space at great speed. This image captures correctly the idea of a hot compressed beginning with a fixed amount of matter spreading out through space and getting cooler and more dilute with time. But there are important ways in which the image is inaccurate.
[Read more…]