(For other posts in this series, see here.)
In mathematics, the standard method of proving something is to start with the axioms and then apply the rules of logic to arrive at a theorem. In science, the parallel exercise is to start with a basic theory that consists of a set of fundamental entities and the laws or principles that are assumed to apply to them (all of which serve as the scientific analogues of axioms) and then apply the rules of logic and the techniques of mathematics to arrive at conclusions. For example, in physics one might start with the Schrodinger equation and the laws of electrodynamics and a system consisting of a proton and electron having specific properties (mass, electric charge, and so on) and use mathematics to arrive at properties of the hydrogen atom, such as its energy levels, emission and absorption spectra, chemical properties, etc. In biology, one might start with the theory of evolution by natural selection and see how it applies to a given set of entities such as genes, cells, or larger organisms.< [Read more…]