I Think I Get It

We seem to be in a cycle. Every time PZ Myers posts something about transgender people, the comment thread floods with transphobes. Given the names involved, I suspect this is due to Ophelia Benson’s effect on the atheio/skeptic sphere.

Regardless, there may be another pattern in play. The go-to argument of these transphobes was transgender athletes, with the old bathroom line showing up late in the thread. I had a boo at GenderCritical on Reddit, to assess if this was just a local thing, and noticed there were more stories about athletics than bathrooms over there. Even one of the bigots thought this was new. Has there been a shift of rhetoric among transphobes?

If so, I think I understand why.

[Read more…]

… and Ophelia Benson

That small thing? I saw a referer pop up from Butterflies and Wheels, when one of Ophelia Benson’s commenters linked to me as an example of outrageous behaviour. Whenever that happens, I refer back to the rule I established three years ago.

For my part, I wrote myself into a corner with that last post. “Ophelia Benson is transphobic” became a “dog bites man” story, there wasn’t anything new or notable about it. The best evidence was on the table, people had entrenched in their opinions, and there seemed little point in flogging that horse further. So I hate-read Benson for a few weeks or so, then got bored and stopped caring. Maybe twice in that time she’s been mentioned in my circles, I checked back in, asked myself and others “does this qualify as noteworthy?,” then after some deliberation decided it wasn’t.

This time, it was. So I did my homework, typed up the first of a two-part post, and promptly got distracted. I promised to return to it during Trans Awareness Week, then broke that promise as academics and life caught up to me. PZ’s post landed just as I was clawing back towards a more stable spot, so I dusted off those old drafts.

[Read more…]

A Good Start

It certainly didn’t seem like that at first blush, though.

Further, we wish to make it clear that Dr. Hall still remains an editor of SBM in good standing. She has worked tirelessly to promote SBM and its principles, contributing over 700 articles to SBM since 2008, all without any compensation or possibility of reward beyond public service. However, at SBM quality matters first, and so we have to remain open to correction when necessary.

Hold on. Harriet Hall has repeatedly shared medical misinformation and lied about the scientific evidence, on a website that claims to promote “the highest standards and traditions of science in health care,” and it hasn’t impacted your view of her at all? Both Steven Novella and David Gorski are not concerned that her flagrant disregard of the science here might spill over to other topics she’s discussed? You’re fine with being used to launder medical misinformation, so long as the actors “remain open to correction?” Yeeesh, I just lost a lot of respect for Science-Based Medicine.

Their response to Hall’s article is also hyper-focused on the scientific literature, with only a few exceptions. That can be quite dangerous, as Allison points out.

Frankly, for a trans person, there’s something surreal and erasing in seeing cis people feuding with cis people over whether we exist. I mean, I am grateful that there are cis people being allies for us … But the fact that people have to come up with logical arguments and “evidence” that our transness is “real,” thus keeping the question alive of whether we do, in fact, exist, keeps giving me the creepy feeling that maybe I’m just a figment of my own imagination. […]

I was just reading HJ Hornbeck’s post about trans athletes, which has all kinds of “scientific,” “objective” evidence that gender dysphoria, gender identity, etc. are real. The problem with going down that path is not only that it concedes the possibility that it could be “disproven,” but also that trans people who don’t fit into the definitions and criteria in those “proofs” are then implicitly left out of the category “real trans.”

When writing about issues at the core of someone’s identity, you need to prioritize humanism over evidence. Hence why I went out of my way to point out the scientific literature is not the final word, that it is not prescriptive. If you doubt me, consider one of the after-effects of ACT UP:

The upshot of all this: “What they were able to revolutionize was really the very way that drugs are identified and tested,” says France. This included scrapping the prevailing practice of testing drugs on a small number of people over a long period of time in favor of testing a huge sample of people over a much shorter period — significantly speeding up the time it took to conduct drug trials.

Similarly, ACT UP insisted that the researchers and pharmaceutical companies that were searching for a cure for AIDS also research treatments for the opportunistic infections that were killing off AIDS patients while they waited for a cure. In the process, says France, “ACT UP created a model for patient advocacy within the research system that never existed before.”

Today it seems natural that people suffering from a disease — whether that’s breast cancer or diabetes — should have a voice in how it is researched and treated. But France says this was decidedly not the norm before ACT UP.

By just reciting the scientific record as if it is a holy book, you roll back the clock to a time when scientists acted as gatekeepers rather than helpers. Instead, start from a patient-centred care perspective where patient rights are placed first. The quality of the science will improve, if anything, and you won’t condescend or impose on the people effected. Novella/Gorski do make some attempts at this, to be fair, but I thought they were easy to miss.

At the same time I was filing away that objection away, though, Novella and Gorski’s follow-up article was really starting to grow on me. It calmly and patiently shoots down a number of arguments made by Shrier and Hall, and the meat of the article doesn’t hold back. They earn their conclusion:

Abigail Shrier’s narrative and, unfortunately, Dr. Hall’s review grossly misrepresent the science and the standard of care, muddying the waters for any meaningful discussion of a science-based approach to transgender care. They mainly rely on anecdotes, outliers, political discussions, and cherry-picked science to make their case, but that case is not valid. […]

At this point there is copious evidence supporting the conclusion that the benefits of gender affirming interventions outweigh the risks; more extensive, high-quality research admittedly is needed. For now, a risk-benefit analysis should be done on an individual basis, as there are many factors to consider. There is enough evidence currently to make a reasonable assessment, and the evidence is also clear that denying gender-affirming care is likely the riskiest option.

I could have used some more citations (shock surprise), but there’s enough there to establish that Novella/Gorski have done their homework. Also, did I mention this is only part one?

Part II of this series will include a far more detailed discussion of the key claims in Abigail Shrier’s book and where she goes wrong by an expert in the care of trans children and adolescents.

Giving a front-line expert a platform to share their insights will do wonders to counter the misinformation. Until that time, we still have a solid takedown of Shrier and Hall’s views on transgender people’s health. Despite my objections, it’s well worth a read.

When Neutrality Isn’t

The details are a bit tough to track, so here’s a timeline.

June 15th, 2021: Harriet Hall publishes a book review of “Irreversible Damage” to Science-Based Medicine.
June 17th: That book review is removed by Steven Novella and David Gorski, as “we felt there were too many issues with the treatment of the relevant science, and leaving the article up would not be appropriate given the standards of SBM [Science-Based Medicine].”
June 17th: The book review is reprinted by Michael Shermer on Skeptic.com, with an editor’s note that reads in part:

While we have long admired the excellent work by the contributors at Science-Based Medicine on issues like vaccines and quack alternative medicine claims, they have long openly displayed a far-left progressive political bias that has compromised their otherwise stellar reputation as a trustworthy source. In science, facts cannot be bent or silenced by politics, however well intentioned, for nature cannot be fooled.

After June 17th: That paragraph of the editor’s note is removed, presumably by Shermer himself.

I’ll have a lot more to say on this, if my drafts are any indication, but first I want to circle back to the editor’s note by Novella and Gorski. Note that while they claim there are many issues with the science Hall presents, they don’t go into detail. In fact, what I quoted is all they have to say on the subject. In contrast, they spend several paragraphs defending their neutrality. A sample:

Already there are false accusations that this move was motivated by pressure from readers. This is not the case. SBM had and never will cave to outside pressure. We have endured a great extent of such pressure, including the threat of lawsuits and actual litigation.

If you’ve been part of the atheist/skeptic movement for a while, this is no surprise. Novella in particular has tried very hard to be politically neutral and “above the drama” when any major controversy comes up. The problem, as I’ve pointed out before, is that neutrality favours the status quo and the status quo is sexist. That a desire to avoid drama is easily exploited, as if bigots deliberately cause drama it grants them more control over the commentary.

We will leave the comments open for now and encourage full, open, and respectful discussion of the topic by anyone interested.

If you haven’t had your head clouded by a neutrality fetish, you know exactly how “respectful” the discussion has been. Transphobes have been recycling all the tired arguments about sports I’ve covered in depth before. They’re receiving a lot of pushback, thankfully, but transgender people and their allies should never be forced to defend their humanity.

Kudos to Novella and Gorski for retracting that book review, which was the right thing to do. But all they’ve done is turn a body blow into a slap in the face. They knew the science behind this review was dodgy, but kept silent on why to avoid stirring up drama, and in the process let the bigots fill the silence with their own spin.

This apologia for censorship is dishonest. Notice that the authors, Novella and Gorski, can’t be bothered to condescend to explain exactly what it is about the book review that made its deletion necessary as a matter of “quality control.” For some reason, it was impossible to allow discussion of the review and the book. The claim that the action had nothing to do with the bleats of the censors urging suppression of the discussion is not plausible.

Turning off comments is just a click of a button, and would have avoided the inevitable transphobic shit-show. Instead, they let it happen in the name of a “full, open, and respectful discussion” they must have known wouldn’t actually occur. Rather than help transgender people, they’ve left them and their allies to mop up the mess while only putting in a token effort to assist.

Guys, don’t do this.

The Crossroads

Apparently I know the solar system very well?

I attended a lecture on Carl Sagan, hosted by the Atheist Society of Calgary, and part of the event was a trivia challenge. While I wasn’t the only person at my table offering answers, my answers seemed to be the ones most consistently endorsed by the group. Assisted by some technical issues, our team wound up with a massive lead over the second-place finisher. The organizer from ASC surprised us all by saying everyone at our table could pick up a free T-shirt. I wasn’t terribly keen on wearing their logo, but I wandered over to the merch table anyway.

Sitting among the other designs was one that stopped me cold.

[Read more…]

Texas Sharpshooter

Quick Note

I’m trying something new! This blog post is available in two places, both here and on a Jupyter notebook. Over there, you can tweak and execute my source code, using it as a sandbox for your own explorations. Over here, it’s just a boring ol’ webpage without any fancy features, albeit one that’s easier to read on the go. Choose your own adventure!

Oh also, CONTENT WARNING: I’ll briefly be discussing sexual assault statistics from the USA at the start, in an abstract sense.

Introduction

[5:08] Now this might seem pedantic to those not interested in athletics, but in the athletic world one percent is absolutely massive. Just take for example the 2016 Olympics. The difference between first and second place in the men’s 100-meter sprint was 0.8%.

I’ve covered this argument from Rationality Rules before, but time has made me realise my original presentation had a problem.

His name is Steven Pinker.

(Click here to show the code)

Forcibe Rape, USA, Police ReportsHe looks at that graph, and sees a decline in violence. I look at that chart, and see an increase in violence. How can two people look at the same data, and come to contradictory conclusions?

Simple, we’ve got at least two separate mental models.

(Click here to show the code)
Finding the maximal likelihood, please wait ... done.
Running an MCMC sampler, please wait ... done.
Charting the results, please wait ...

The same chart as before, with three models overlaid.

All Pinker cares about is short-term trends here, as he’s focused on “The Great Decline” in crime since the 1990’s. His mental model looks at the general trend over the last two decades of data, and discards the rest of the datapoints. It’s the model I’ve put in red.

I used two seperate models in my blog post. The first is quite crude: is the last datapoint better than the first? This model is quite intuitive, as it amounts to “leave the place in better shape than when you arrived,” and it’s dead easy to calculate. It discards all but two datapoints, though, which is worse than Pinker’s model. I’ve put this one in green.

The best model, in my opinion, wouldn’t discard any datapoints. It would also incorporate as much uncertainty as possible about the system. Unsurprisingly, given my blogging history, I consider Bayesian statistics to be the best way to represent uncertainty. A linear model is the best choice for general trends, so I went with a three-parameter likelihood and prior:

p( x,y | m,b,\log(\sigma) ) = e^{ -\frac 1 2 \big(\frac{y-k}{\sigma}\big)^2 }(\sigma \sqrt{2\pi})^{-1}, ~ k = x \cdot m + b p( m,b,\log(\sigma) ) = \frac 1 \sigma (1 + m^2)^{-\frac 3 2}

This third model encompasses all possible trendlines you could draw on the graph, but it doesn’t hold them all to be equally likely. Since time is short, I used an MCMC sampler to randomly sample the resulting probability distribution, and charted that sample in blue. As you can imagine this requires a lot more calculation than the second model, but I can’t think of anything superior.

Which model is best depends on the context. If you were arguing just over the rate of police-reported sexual assault from 1992 to 2012, Pinker’s model would be pretty good if incomplete. However, his whole schtick is that long-term trends show a decrease in violence, and when it comes to sexual violence in particular he’s the only one who dares to talk about this. He’s not being self-consistent, which is easier to see when you make your implicit mental models explicit.

Pointing at Variance Isn’t Enough

Let’s return to Rationality Rules’ latest transphobic video. In the citations, he explicitly references the men’s 100m sprint at the 2016 Olympics. That’s a terribly narrow window to view athletic performance through, so I tracked down the racetimes of all eight finalists on the IAAF’s website and tossed them into a spreadsheet.

 

(Click here to show the code)
Rio de Janeiro Olympic Games, finals
Athlete  Result  Delta
     bolt    9.81   0.00
   gatlin    9.89   0.08
de grasse    9.91   0.10
    blake    9.93   0.12
  simbine    9.94   0.13
    meite    9.96   0.15
   vicaut   10.04   0.23
  bromell   10.06   0.25

Here, we see exactly what Rationality Rules sees: Usain Bolt, the current world record holder, earned himself another Olympic gold medal in the 100m sprint. First and third place are separated by a tenth of a second, and the slowest person in the finals was a mere quarter of a second behind the fastest. That’s a small fraction of the time it takes to complete the event.

(Click here to show the code)
Race times in 2016, sorted by fastest time
Name             Min time         Mean             Median           Personal max-min
-----------------------------------------------------------------------------------------------------
gatlin                        9.8         9.95         9.94         0.39
bolt                         9.81         9.98        10.01         0.34
bromell                      9.84        10.00        10.01         0.30
vicaut                       9.86        10.01        10.02         0.33
simbine                      9.89        10.10        10.08         0.43
de grasse                    9.91        10.07        10.04         0.41
blake                        9.93        10.04         9.98         0.33
meite                        9.95        10.10        10.05         0.44

Here, we see what I see: the person who won Olympic gold that year didn’t have the fastest time. That honour goes to Justin Gatlin, who squeaked ahead of Bolt by a hundredth of a second.

Come to think of it, isn’t the fastest time a poor judge of how good an athlete is? Picture one sprinter with a faster average time than another, and a second with a faster minimum time. The first athlete will win more races than the second. By that metric, Gatlin’s lead grows to three hundredths of a second.

The mean, alas, is easily tugged around by outliers. If someone had an exceptionally good or bad race, they could easily shift their overall mean a decent ways from where the mean of every other result lies. The median is a lot more resistant to the extremes, and thus a fairer measure of overall performance. By that metric, Bolt is now tied for third with Trayvon Bromell.

We could also judge how good an athlete is by how consistent they were in the given calendar year. By this metric, Bolt falls into fourth place behind Bromell, Jimmy Vicaut, and Yohan Blake. Even if you don’t agree to this metric, notice how everyone’s race times in 2016 varies between three and four tenths of a second. It’s hard to argue that a performance edge of a tenth of a second matters when even at the elite level sprinters’ times will vary by significantly more.

But let’s put on our Steven Pinker glasses. We don’t judge races by medians, we go by the fastest time. We don’t award records for the lowest average or most consistent performance, we go by the fastest time. Yes, Bolt didn’t have the fastest 100m time in 2016, but now we’re down to hundredths of a second; if anything, we’ve dug up more evidence that itty-bitty performance differences matter. If I’d just left things at that last paragraph, which is about as far as I progressed the argument last time, a Steven Pinker would likely have walked away even more convinced that Rationality Rules got it right.

I don’t have to leave things there, though. This time around, I’ll make my mental model as explicit as possible. Hopefully by fully arguing the case, instead of dumping out data and hoping you and I share the same mental model, I could manage to sway even a diehard skeptic. To further seal the deal, the Jupyter notebook will allow you to audit my thinking or even create your own model. No need to take my word.

I’m laying everything out in clear sight. I hope you’ll give it all a look before dismissing me.

Model Behaviour

Our choice of model will be guided by the assumptions we make about how athletes perform in the 100 metre sprint. If we’re going to do this properly, we have to lay out those assumptions as clearly as possible.

  1. The Best Athlete Is the One Who Wins the Most. Our first problem is to decide what we mean by “best,” when it comes to the 100 metre sprint. Rather than use any metric like the lowest possible time or the best overall performance, I’m going to settle on something I think we’ll both agree to: the athlete who wins the most races is the best. We’ll be pitting our models against each other as many times as possible via virtual races, and see who comes out on top.
  2. Pobody’s Nerfect. There is always going to be a spanner in the works. Maybe one athlete has a touch of the flu, maybe another is going through a bad breakup, maybe a third got a rock in their shoe. Even if we can control for all that, human beings are complex machines with many moving parts. Our performance will vary. This means we can’t use point estimates for our model, like the minimum or median race time, and instead must use a continuous statistical distribution.This assumption might seem like begging the question, as variance is central to my counter-argument, but note that I’m only asserting there’s some variance. I’m not saying how much variance there is. It could easily be so small as to be inconsequential, in the process creating strong evidence that Rationality Rules was right.
  3. Physics Always Wins. No human being can run at the speed of light. For that matter, nobody is going to break the sound barrier during the 100 metre sprint. This assumption places a hard constraint on our model, that there is a minimum time anyone could run the 100m. It rules out a number of potential candidates, like the Gaussian distribution, which allow negative times.
  4. It’s Easier To Move Slow Than To Move Fast. This is kind of related to the last one, but it’s worth stating explicitly. Kinetic energy is proportional to the square of the velocity, so building up speed requires dumping an ever-increasing amount of energy into the system. Thus our model should have a bias towards slower times, giving it a lopsided look.

Based on all the above, I propose the Gamma distribution would make a suitable model.

\Gamma(x | \alpha, \beta ) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}

(Be careful not to confuse the distribution with the function. I may need the Gamma function to calculate the Gamma distribution, but the Gamma function isn’t a valid probability distribution.)

(Click here to show the code)
Three versions of the Gamma Distribution

Three versions of the Gamma Distribution.

It’s a remarkably flexible distribution, capable of duplicating both the Exponential and Gaussian distributions. That’s handy, as if one of our above assumptions is wrong the fitting process could still come up with a good fit. Note that the Gamma distribution has a finite bound at zero, which is equivalent to stating that negative values are impossible. The variance can be expanded or contracted arbitrarily, so it isn’t implicitly supporting my arguments. Best of all, we’re not restricted to anchor the distribution at zero. With a little tweak …

\Gamma(x | \alpha, \beta, b ) = \frac{\beta^\alpha}{\Gamma(\alpha)} \hat x^{\alpha-1} e^{-\beta \hat x}, ~ \hat x = x - b

… we can shift that zero mark wherever we wish. The parameter sets the minimum value our model predicts, while α controls the underlying shape and β controls the scale or rate associated with this distribution. α < 1 nets you the Exponential, and large values of α lead to something very Gaussian. Conveniently for me, SciPy already supports this three-parameter tweak.

My intuition is that the Gamma distribution on the left, with α > 1 but not too big, is the best model for athlete performance. That implies an athlete’s performance will hover around a specific value, and while they’re capable of faster times those are more difficult to pull off. The Exponential distribution, with α < 1, is most favourable to Rationality Rules, as it asserts the race time we’re most likely to observe is also the fastest time an athlete can do. We’ll never actually see that time, but what we observe will cluster around that minimum.

Running the Numbers

Enough chatter, let’s fit some models! For this one, my prior will be

p( \alpha, \beta, b ) = \begin{cases} 0, & \alpha \le 0 \\ 0, & \beta \le 0 \\ 0, & b \le 0 \\ 1, & \text{otherwise} \end{cases},

which is pretty light and only exists to filter out garbage values.

(Click here to show the code)
Generating some models for 2016 race times (a few seconds each) ...
# name          	α               	β               	b               
gatlin          	0.288 (+0.112 -0.075)	1.973 (+0.765 -0.511)	9.798 (+0.002 -0.016)
bolt            	0.310 (+0.107 -0.083)	1.723 (+0.596 -0.459)	9.802 (+0.008 -0.025)
bromell         	0.339 (+0.115 -0.082)	1.677 (+0.570 -0.404)	9.836 (+0.004 -0.032)
vicaut          	0.332 (+0.066 -0.084)	1.576 (+0.315 -0.400)	9.856 (+0.004 -0.013)
simbine         	0.401 (+0.077 -0.068)	1.327 (+0.256 -0.226)	9.887 (+0.003 -0.018)
de grasse       	0.357 (+0.073 -0.082)	1.340 (+0.274 -0.307)	9.907 (+0.003 -0.022)
blake           	0.289 (+0.103 -0.085)	1.223 (+0.437 -0.361)	9.929 (+0.001 -0.008)
meite           	0.328 (+0.089 -0.067)	1.090 (+0.295 -0.222)	9.949 (+0.000 -0.003)
... done.

This text can’t change based on the results of the code, so this is only a guess, but I’m pretty sure you’re seeing a lot of α values less than one. That really had me worried when I first ran this model, as I was already conceding ground to Rationality Rules by focusing only on the 100 metre sprint, where even I think that physiology plays a significant role. I did a few trial runs with a prior that forced α > 1, but the resulting models would hug that threshold as tightly as possible. Comparing likelihoods, the α < 1 versions were always more likely than the α > 1 ones.

The fitting process was telling me my intuition was wrong, and the best model here is the one that most favours Rationality Rules. Look at the b values, too. There’s no way I could have sorted the models based on that parameter before I fit them; instead, I sorted them by each athlete’s minimum time. Sure enough, the model is hugging the fastest time each athlete posted that year, rather than a hypothetical minimum time they could achieve.

(Click here to show the code)

100 models of blake's 2016 race times.

Charting some of the models in the posterior drives this home. I’ve looked at a few by tweaking the “player” variable, as well as the output of multiple sample runs, and they all are dominated by Exponential distributions.

Dang, we’ve tilted the playing field quite a ways in Rationality Rules’ favour.

Still, let’s simulate some races. For each race, I’ll pick a random trio of parameters from each model’s posterior and feet that into SciPy’s random number routines to generate a race time for each sprinter. Fastest time wins, and we tally up those wins to estimate the odds of any one sprinter coming in first.

Before running those simulations, though, we should make some predictions. Rationality Rules’ view is that (emphasis mine) …

[9:18] You see, I absolutely understand why we have and still do categorize sports based upon sex, as it’s simply the case that the vast majority of males have significant athletic advantages over females, but strictly speaking it’s not due to their sex. It’s due to factors that heavily correlate with their sex, such as height, width, heart size, lung size, bone density, muscle mass, muscle fiber type, hemoglobin, and so on. Or, in other words, sports are not segregated due to chromosomes, they’re segregated due to morphology.

[16:48] Which is to say that the attributes granted from male puberty that play a vital role in explosive events – such as height, width, limb length, and fast twitch muscle fibers – have not been shown to be sufficiently mitigated by HRT in trans women.

[19:07] In some events – such as long-distance running, in which hemoglobin and slow-twitch muscle fibers are vital – I think there’s a strong argument to say no, [transgender women who transitioned after puberty] don’t have an unfair advantage, as the primary attributes are sufficiently mitigated. But in most events, and especially those in which height, width, hip size, limb length, muscle mass, and muscle fiber type are the primary attributes – such as weightlifting, sprinting, hammer throw, javelin, netball, boxing, karate, basketball, rugby, judo, rowing, hockey, and many more – my answer is yes, most do have an unfair advantage.

… human morphology due to puberty is the primary determinant of race performance. Since our bodies change little after puberty, that implies your race performance should be both constant and consistent. The most extreme version of this argument states that the fastest person should win 100% of the time. I doubt Rationality Rules holds that view, but I am pretty confident he’d place the odds of the fastest person winning quite high.

The opposite view is that the winner is due to chance. Since there are eight athletes competing here, each would have a 12.5% chance of winning. I certainly don’t hold that view, but I do argue that chance plays a significant role in who wins. I thus want the odds of the fastest person winning to be somewhere above 12.8%, but not too much higher.

(Click here to show the code)
Simulating 15000 races, please wait ... done.

Number of wins during simulation
--------------------------------
gatlin                       5174 (34.49%)
bolt                         4611 (30.74%)
bromell                      2286 (15.24%)
vicaut                       1491 (9.94%)
simbine                       530 (3.53%)
de grasse                     513 (3.42%)
blake                         278 (1.85%)
meite                         117 (0.78%)

Whew! The fastest 100 metre sprinter of 2016 only had a one in three chance of winning Olympic gold. Of the eight athletes, three had odds better than chance of winning. Even with the field tilted in favor of Rationality Rules, this strongly hints that other factors are more determinative of performance than fixed physiology.

But let’s put our Steven Pinker glasses back on for a moment. Yes, the odds of the fastest 100 metre sprinter winning the 2016 Olympics are surprisingly low, but look at the spread between first and last place. What’s on my screen tells me that Gatlin is 40-50 times more likely to win Olympic gold than Ben Youssef Meite, which is a pretty substantial gap. Maybe we can rescue Rationality Rules?

In order for Meite to win, though, he didn’t just have to beat Gatlin. He had to also beat six other sprinters. If pM represents the geometric mean of Meite beating one sprinter, then his odds of beating seven are pM7. The same rationale applies to Gatlin, of course, but because the geometric mean of him beating seven other racers is higher than pM, repeatedly multiplying it by itself results in a much greater number. With a little math, we can use the number of wins above to estimate how well the first-place finisher would fare against the last-place finisher in a one-on-one race.

(Click here to show the code)
In the above simulation, gatlin was 39.5 times more likely to win Olympic gold than meite.
But we estimate that if they were racing head-to-head, gatlin would win only 62.8% of the time.
 (For reference, their best race times in 2016 differed by 1.53%.)

For comparison, FiveThirtyEight gave roughly those odds for Hilary Clinton becoming the president of the USA in 2016. That’s not all that high, given how “massive” the difference is in their best race times that year.

This is just an estimate, though. Maybe if we pitted our models head-to-head, we’d get different results?

(Click here to show the code)
Wins when racing head to head (1875 simulations each)
----------------------------------------------
LOSER->       gatlin      bolt   bromell    vicaut   simbine de grasse     blake     meite
gatlin                   48.9%     52.1%     55.8%     56.4%     59.5%     63.5%     61.9%
bolt                               52.2%     57.9%     55.8%     57.9%     65.8%     60.2%
bromell                                      52.4%     55.3%     55.0%     65.2%     59.0%
vicaut                                                 51.7%     52.2%     59.8%     59.3%
simbine                                                          52.3%     57.7%     57.1%
de grasse                                                                  57.0%     54.7%
blake                                                                                47.2%
meite                                                                                     

The best winning percentage was 65.8% (therefore the worst losing percent was 34.2%).

Nope, it’s pretty much bang on! The columns of this chart represents the loser of the head-to-head, while the rows represent the winner. That number in the upper-right, then, represents the odds of Gatlin coming in first against Meite. When I run the numbers, I usually get a percentage that’s less than 5 percentage points off. Since the odds of one person losing is the odds of the other person winning, you can flip around who won and lost by subtracting the odds from 100%. That explains why I only calculated less than half of the match-ups.

I don’t know what’s on your screen, but I typically get one or two match-ups that are below 50%. I’m again organizing the calculations by each athlete’s fastest time in 2016, so if an athlete’s win ratio was purely determined by that then every single value in this table would be equal to or above 50%. That’s usually the case, thanks to each model favouring the Exponential distribution, but sometimes one sprinter still winds up with a better average time than a second’s fastest time. As pointed out earlier, that translates into more wins for the first athlete.

Getting Physical

Even at this elite level, you can see the odds of someone winning a head-to-head race are not terribly high. A layperson can create that much bias in a coin toss, yet we still both outcomes of that toss to be equally likely.

This doesn’t really contradict Rationality Rules’ claim that fractions of a percent in performance matter, though. Each of these athletes differ in physiology, and while that may not have as much effect as we thought it still has some effect. What we really need is a way to substract out the effects due to morphology.

If you read that old blog post, you know what’s coming next.

[16:48] Which is to say that the attributes granted from male puberty that play a vital role in explosive events – such as height, width, limb length, and fast twitch muscle fibers – have not been shown to be sufficiently mitigated by HRT in trans women.

According to Rationality Rules, the physical traits that determine track performance are all set in place by puberty. Since puberty finishes roughly around age 15, and human beings can easily live to 75, that implies those traits are fixed for most of our lifespan. In practice that’s not quite true, as (for instance) human beings lose a bit of height in old age, but here we’re only dealing with athletes in the prime of their career. Every attribute Rationality Rules lists is effectively constant.

So to truly put RR’s claim to the test, we need to fit our model to different parts of the same athlete’s career, and compare those head-to-head results with the ones where we raced athletes against each other.

(Click here to show the code)
     Athlete First Result Latest Result
0      blake   2005-07-13    2019-06-21
1       bolt   2007-07-18    2017-08-05
2    bromell   2012-04-06    2019-06-08
3  de grasse   2012-06-08    2019-06-20
4     gatlin   2000-05-13    2019-07-05
5      meite   2003-07-11    2018-06-16
6    simbine   2010-03-13    2019-06-20
7     vicaut   2008-07-05    2019-07-02

That dataset contains official IAAF times going back nearly two decades, in some cases, for those eight athletes. In the case of Bolt and Meite, those span their entire sprinting career.

Which athlete should we focus on? It’s tempting to go with Bolt, but he’s an outlier who broke the mathmatical models used to predict sprint times. Gatlin would have been my second choice, but between his unusually long career and history of doping there’s a decent argument that he too is an outlier. Bromell seems free of any issue, so I’ll go with him. Don’t agree? I made changing the athlete as simple as altering one variable, so you can pick whoever you like.

I’ll divide up these athlete’s careers by year, as their performance should be pretty constant over that timespan, and for this sport there’s usually enough datapoints within the year to get a decent fit.

(Click here to show the code)
bromell vs. bromell, model building ...
year	α	β	b
2012	0.639 (+0.317 -0.219)	0.817 (+0.406 -0.280)	10.370 (+0.028 -0.415)
2013	0.662 (+0.157 -0.118)	1.090 (+0.258 -0.195)	9.970 (+0.018 -0.070)
2014	0.457 (+0.118 -0.070)	1.556 (+0.403 -0.238)	9.762 (+0.007 -0.035)
2015	0.312 (+0.069 -0.064)	2.082 (+0.459 -0.423)	9.758 (+0.002 -0.016)
2016	0.356 (+0.092 -0.104)	1.761 (+0.457 -0.513)	9.835 (+0.005 -0.037)
... done.

bromell vs. bromell, head to head (1875 simulations)
----------------------------------------------
LOSER->   2012   2013   2014   2015   2016
   2012         61.3%  67.4%  74.3%  71.0%
   2013                65.1%  70.7%  66.9%
   2014                       57.7%  48.7%
   2015                              40.2%
   2016                                   

The best winning percentage was 74.3% (therefore the worst losing percent was 25.7%).

Again, I have no idea what you’re seeing, but I’ve looked at a number of Bromell vs. Bromell runs, and every one I’ve done shows at least as much variation, if not more, than runs that pit Bromell against other athletes. Bromell vs. Bromell shows even more variation in success than the coin flip benchmark, giving us justification for saying Bromell has a significant advantage over Bromell.

I’ve also changed that variable myself, and seen the same pattern in other athletes. Worried about a lack of datapoints causing the model to “fuzz out” and cover a wide range of values? I thought of that and restricted the code to filter out years with less than three races. Honestly, I think it puts my conclusion on firmer ground.

Conclusion

Texas Sharpshooter Fallacy: Ignoring the difference while focusing on the similarities, thus coming to an inaccurate conclusion. Similar to the gambler’s fallacy, this is an example of inserting meaning into randomness.

Rationality Rules loves to point to sporting records and the outcome of single races, as on the surface these seem to justify his assertion that differences in performance of fractions of a percent matter. In reality, he’s painting a bullseye around a very small subset of the data and ignoring the rest. When you include all the data, you find Rationality Rules has badly missed the mark. Physiology cannot be as determinative as Rationality Rules claims, other factors must be important enough to sometimes overrule it.

And, at long last, I can call bullshit on this (emphasis mine):

[17:50] It’s important to stress, by the way, that these are just my views. I’m not a biologist, physiologist, or statistician, though I have had people check this video who are.

Either Rationality Rules found a statistician who has no idea of variance, which is like finding a computer scientist who doesn’t know boolean logic, or he never actually consulted a statistician. Chalk up yet another lie in his column.

TERFs Harm Women

I hate loose threads. There was something I had to brush past in my last post, because I didn’t know much about it and I was already over the 2,000 word mark. It kept bugging me, though, enough to prompt me to do my homework. Now I realize why this was the first bullet point in that TERF apologetics post:

Associating our intellectual position with a far right-wing one, because some far right-wing thinkers would agree with us in some of our conclusions, and insinuating that our position is all the worse because of it, is an ad hominem. Ad hominems are widely recognised as inappropriate in philosophy. […]

Equally: the fact that person shares a conclusion with a far right-wing person could never show, on its own, that the conclusion was false. It is likely that every single person on the planet shares several hundred (true) beliefs with any given far right-wing person. In brief: this strategy, and any which are structurally like it, is rhetorical guilt-by-association. It has no place in responsible argument.

If we’re playing fallacy cards, then I pull out the Fallacy Fallacy. If it’s a coincidence that TERFs and the religious far-Right agree on several positions, that is indeed an ad hominem. If instead they agree on the same positions because they’ve directly convinced one another of the truthhood of those positions, then it is fair to link the two. This wouldn’t be a bad thing if their positions were true, but if they’re instead an incoherent mess used to harm others then we have an entirely different story. If I can establish such a link then I can lay the harm caused by one group at the feet of the other.

[Read more…]