Ulvophyte multicellularity: the sea lettuce genome


Sea lettuce (Ulva sp.), Jericho Beach, Vancouver, BC, February 28, 2011.

David Kirk called the Chlorophyte green algae “master colony-formers” because multicellularity has evolved so many times within this class:

Although members of most chlorophycean genera and species are unicellular flagellates, multicellular forms are present in 9 of the 11 chlorophycean orders (Melkonian 1990). Multicellularity is believed to have arisen independently in each of these orders, and in some orders more than once.

In contrast, multicellularity has probably only evolved once or twice in the probable sister group of the Chlorophyceae, the Ulvophyceae. So when numbers like 25 get thrown around for the number of times multicellularity has evolved, something like half of those times were in the green algae.

We know a lot less about how multicellularity evolved in the Ulvophyceae than we do in the volvocine algae within the Chlorophyceae. A big step forward in understanding ulvophyte multicellularity happened last week, though, with the publication of the Ulva mutabilis genome.

[Read more…]

Uncommon Descent on Elizabeth Pennisi’s Science article

Two-headed quarter

Image from www.twoheadedquarter.net.

Yesterday, I ran a bit long about Elizabeth Pennisi’s new article in Science, “The momentous transition to multicellular life may not have been so hard after all.” I’m not the only one who noticed it, though; Uncommon Descent also commented (“At Science: Maybe the transition from single cells to multicellular life wasn’t that hard?“). There’s not much to it, just a longish quote from the article followed by this:

So at the basic level, there is a program that adapts single cells to multicellularity? Yes, that certainly makes multicellularity easier and even swifter but it also make traditional Darwinian explanations sound ever more stretched.

So if the evolution of multicellularity is easy, that’s evidence against “traditional Darwinian explanations.” Remember “Heads I win, tails you lose“?

…if multicellularity is really complicated, that’s evidence for intelligent design. But if multicellularity is really simple, that’s evidence for intelligent design.

[Read more…]

Multicellularity in Science

I spent the last week of June backpacking in Baxter State Park, Maine. When I finally emerged from the woods, my first stop was Shin Pond Village for a pay shower, a non-rehydrated breakfast, and free internet access. Among the week’s worth of unread emails were a nice surprise and a not-so-nice surprise. The not-so-nice surprise was a manuscript rejected without review; the nice surprise was a new article by Elizabeth Pennisi in Science, which came out when I was somewhere between Upper South Branch Pond and Webster Outlet.

Upper South Branch Pond

Upper South Branch Pond, Baxter State Park, Maine. I spent two nights here.

The article, for which I was interviewed before Baxter, synthesizes recent work across a wide range of organisms that suggests that the evolution of multicellularity may not be as difficult a step as we often assume:

The evolutionary histories of some groups of organisms record repeated transitions from single-celled to multicellular forms, suggesting the hurdles could not have been so high. Genetic comparisons between simple multicellular organisms and their single-celled relatives have revealed that much of the molecular equipment needed for cells to band together and coordinate their activities may have been in place well before multicellularity evolved. And clever experiments have shown that in the test tube, single-celled life can evolve the beginnings of multicellularity in just a few hundred generations—an evolutionary instant.

[Read more…]

The Essential Tension

The Essential Tension

When I ran across The Essential Tension by Sonya Bahar, my first thought was that it sounded very much like something my PhD advisor could have written:

‘The Essential Tension’ explores how agents that naturally compete come to act together as a group. The author argues that the controversial concept of multilevel selection is essential to biological evolution, a proposition set to stimulate new debate.

The subtitle is Competition, Cooperation and Multilevel Selection in Evolution, which is more than vaguely reminiscent of the ‘cooperation and conflict’ framework Rick Michod has built over the last twenty years.

[Read more…]

Another take on volvocine individuality

Dinah Davison & Erik Hanschen

Dinah Davison and Erik Hanschen.

A couple of weeks ago, I indulged in a little shameless self-promotion, writing about my new chapter on volvocine individuality in Biological Individuality, Integrating Scientific, Philosophical, and Historical Perspectives. Now two graduate students in the Michod lab at the University of Arizona, Erik Hanschen and Dinah Davison, have published their own take on volvocine individuality in Philosophy, Theory, and Practice in Biology (“Evolution of individuality: a case study in the volvocine green algae“). The article is open-access, and Hanschen and Davison are listed as equal contributors.

[Read more…]

Non-model model organisms

Jim Umen, the lead organizer of the upcoming Volvox meeting, has written a section for a new paper in BMC Biology, “Non-model model organisms.” Like all of the BMC journals, BMC Biology is open access, so you can check out the original.

The article surveys organisms that, while not among the traditional model systems, have been developed as model systems for studying particular biological questions. The paper has an unusual format, with a discrete section devoted to each species, each written by one or two of the authors. Aside from Volvox, there are sections on diatoms, the ciliates Stentor and Oxytricha, the amoeba Naeglaria, fission yeast, the filamentous fungus Ashbya, the moss Physcomitrella, the cnidarian Nematostella, tardigrades, axolotls, killifish, R bodies (a bacterial toxin delivery system), and cerebral organoids (a kind of lab-grown micro-brain).

Dr. Umen presents Volvox and its relatives as a model system for understand the evolution of traits related to the evolution of multicellularity:

[Read more…]

Cells, colonies, and clones: individuality in the volvocine algae

Biological Individuality

As I mentioned previously, I have a chapter in the newly published book Biological Individuality, Integrating Scientific, Philosophical, and Historical Perspectives. The chapter was actually written nearly five years ago, but things move more slowly in the philosophy world than that of biology. Finally, though, both the print and electronic versions are now available; here is the electronic version of my chapter. The book currently has no reviews on Amazon, so if you want to give it a read, yours could be the first. If you’re interested in current and historical views on individuality, there is a lot of good stuff in here, including contributions by Scott Lidgard & Lynn Nyhart, Beckett Sterner, Andrew Reynolds, Snait Gissis, Olivier Rieppel, Michael Osborne, Hannah Landecker, Ingo Brigandt, James Elwick, Scott Gilbert, and Alan Love & Ingo Brigandt.

[Read more…]

Volvox 2017: David Kirk will be there

David Kirk

Dr. David Kirk, Professor Emeritus at Washington University in St. Louis.

I just found out from Jim Umen, who’s organizing the Fourth International Volvox Conference, that David Kirk is planning to attend. This is great news; we’ve been wanting Dr. Kirk to come since the first meeting in 2011, but it hasn’t previously worked out.

[Read more…]