Volvox 2017: Vexed Volvocines

Zach Grochau-Wright

Zach Grochau-Wright

Zach Grochau-Wright has kindly given me permission to print the haiku he presented at the Volvox 2017 meeting in St. Louis. Zach may be the most prolific artist in the obscure sub-genre of volvocine poetry, having previously written and performed “Volvocine rap” at the Volvox 2015 meeting. Here it is in its barely-longer-than-his-name entirety:

[Read more…]

Chlamy 2018 dates and venue announced

Chlamydomonas zygotes

The dates and location have been announced for the 18th International Conference on the Cell and Molecular Biology of Chlamydomonas:

The 18th International Conference on the Cell and Molecular Biology of Chlamydomonas will be held from June 17-21, 2018 in Washington DC. We look forward to seeing all of you there, so please keep those dates open. The venue will be the historic Carnegie Institution headquarters located in the heart of DC at 1530 P Street NW. To learn more about the venue go to https://rentals.carnegiescience.edu/. More information will be posted concerning the conference over the next couple of months.

I’ll keep you posted as more information becomes available.

Evolution of outcrossing and selfing

Sex is costly. You could die trying to find a mate. Your mate could kill you, or give you a disease. You could be unable to find a mate in the first place, in which case you’d be better off if you could reproduce asexually. Even without those risks, though, even in a simple genetic simulation, sexual reproduction means you only pass on half of your genes to your offspring.

So why do it? We know that it’s possible to reproduce without sex; lots of things do. It’s not just bacteria and protists, either: asexual reproduction occurs in some plants, insects, snails, amphibians, and reptiles, among many others. The logic of natural selection suggests that sex must confer some benefit that outweighs all the costs, at least in some situations. Essentially all of the proposed benefits of sex have to do with outcrossing, or mixing your genes with those of another, genetically distinct, individual.

Nevertheless, a lot of things that reproduce sexually do so without outcrossing. This is especially common in plants, where it’s called “self-pollination” or just “selfing.” Selfing is thought to provide short-term advantages relative to outcrossing–basically by avoiding the costs I’ve listed above. However, selfing also doesn’t provide most of the benefits associated with sex, so it’s thought to be a bad strategy in the long term. This leads to selfing being thought of as a “dead-end” strategy: the short-term advantages make it unlikely that a selfing species will return to outcrossing, and the reduced genetic variation produced by selfing make diversification less likely.

Erik Hanschen and colleagues have tested these predictions in the volvocine algae (I’m among the “colleagues,” as are John Wiens, Hisayoshi Nozaki, and Rick Michod): do selfing species ever return to outcrossing, and do they have a lower rate of diversification than outcrossing species? Both mating systems exist within the volvocine algae, and so they make a good test case. Roughly speaking, the term heterothallic refers to outcrossing species and homothallic to selfing species:

Hanschen et al. Fig. 1

Figure 1 from Hanschen et al. 2017. Diversity of mating systems in the volvocine green algae and their respective life cycles. (A) In outcrossing (heterothallic) species, distinct genotypes (male on left and female on right) sexually differentiate producing either eggs or sperm. A diploid zygospore (red) is produced after fertilization. Sexual offspring hatch and enter the haploid, asexual phase of the life cycle. (B) In selfing (homothallic) monoecious species, a single genotype is capable of producing both gamete types. Upon sexual differentiation, each sexual colony produces both sperm and eggs. (C) In selfing (homothallic) dioecious species, a single genotype sexually differentiates, producing either eggs or sperm, but not both within the same colony. Cartoons in panels (A–C) are shown with anisogamous, Volvox-like morphology for illustrative purposes only.

[Read more…]

Big Biology Podcast

Big Biology logoI listened to the first couple of episodes of the Big Biology podcast this weekend, and it’s quite good. Marty Martin from the University of South Florida and Art Woods from the University of Montana interview scientists about cool topics. In the first two episodes, they talk to Robert Dudley about why primates like alcohol and Denis Noble about the role(s) of stochasticity in biology.

[Read more…]

Two new gene expression studies in Volvox

One of the most remarkable things about multicellular organisms is the differentiation of genetically identical cells into functionally specialized cell types. It’s difficult to say exactly how many cell types a given species has, since we would first have to say how different two cells need to be to count as different types. Nevertheless, it’s clear that there’s a wide range among different multicellular groups. Within animals, for example, placozoa have around five cell types, mammals over a hundred.

Amazingly, all of these very different cell types share a genome: your liver cells are pretty much genetically identical to your brain cells (and your skin cells, your kidney cells, your muscle cells…). The dramatic differences in form and function among all these cell types are mainly a result of differences in gene expression.

Volvox has just two cell types: a dozen or so big cells that are responsible for reproduction and one or two thousand smaller cells that bear the flagella that colonies use to swim:

Matt & Umen Fig 1A

Figure 1A from Matt & Umen 2017. Micrographs of an intact adult Volvox carteri spheroid with fully mature somatic and gonidial cells (left), isolated somatic cell (top right), and isolated gonidial cell (bottom right).

This was one of the main attractions for the researchers who developed Volvox as a model organism. With only two cell types, Volvox retains something close to its original form of cellular differentiation, making questions about how such differentiation evolved much more tractable.

[Read more…]